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Preface

You are now keeping in your hands this new book of elementary inequalities. ” Yet
another book of inequalities?” We hear you asking, and you may be right. Speaking
with the author’s words:

"Myriads of inequalities and inequality techniques appear nowadays in books and
contests. Trying to learn all of them by heart is hopeless and useless. Alternatively, this
books objective is to help you understand how inequalities work and how you can set
up your own techniques on the spot, not just remember the ones you already learned.
To get such a pragmatic mastery of inequalities, you surely need a comprehensive
knowledge of basic inequalities at first. The goal of the first part of the book (chapters
1-8) is to lay down the foundations you will need in the second part (chapter 9),
where solving problems will give you some practice. It is important to try and solve
the problems by yourself as hard as you can, since only practice will develop your
understanding, especially the problems in the second part. On that note, this books
objective is not to present beautiful solutions to the problems, but to present such a
variety of problems and techniques that will give you the best kind of practice.”

It is true that there are very many books on inequalities and you have all the right
to be bored and tired of them. But we tell you that this is not the case with this one.
Just read the proof of Nesbitt’s Inequality in the very beginning of the material, and
you will understand exactly what we mean.

Now that you read it you should trust us that you will find in this book new
and beautiful proofs for old inequalities and this alone can be a good reason to read
it, or even just to take a quick look at it. You will find a first chapter dedicated to
the classical inequalities: from AM-GM and Cauchy-Schwartz inequalities to the use
of derivatives, to Chebyshev’s and rearrangements’ inequalities, you will find here
the most important and beautiful stuff related to these classical topics. And then

you have spectacular topics: you have symmetric inequalities, and inequalities with
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convex functions and even a less known method of balancing coefficients. And the
author would add

”You may think they are too simple to have a serious review. However, I emphasize
that this review is essential in any inequalities book. Why? Because they make at
least half of what you need to know in the realm of inequalities. Furthermore, really
understanding them at a deep level is not easy at all. Again, this is the goal of the
first part of the book, and it is the foremost goal of this book.”

Every topic is described through various and numerous examples taken from many
sources, especially from math contests around the world, from recent contests and
recent books', or from (more or less) specialized sites on the Internet, which makes the
book very lively and interesting to read for those who are involved in such activities,
students and teachers from all over the world.

The author seems to be very interested in creating new inequalities: this may be
seen in the whole presentation of the material, but mostly in the special chapter 2
(dedicated to this topic), or, again, in the end of the book. Every step in every proof
is explained in such a manner that it seems very natural to think of; this also comes
from the author’s longing for a deep understanding of inequalities, longing that he
passes on to the reader. Many exercises are left for those who are interested and, as a
real professional solver, the author always advises us to try to find our own solution
first, and only then read his one.

We will finish this introduction with the words of the author:

"Don’t let the problems overwhelm you, though they are quite impressive prob-
lems, study applications of the first five basic inequalities mentioned above, plus the
Abel formula, symmetric inequalities and the derivative method. Now relax with the

AM-GM inequality - the foundational brick of inequalities.”

Mircea Lascu, Marian Tetiva
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Abbreviations and Notations

Abbreviations
IMO International Mathematical Olympiad
TST Selection Test for IMO
APMO Asian Pacific Mathematical Olympiad
MO National Mathematical Olympiad
MYM Mathematics and Youth Vietnamese Magazine
VMEO The contest of the website www.diendantoanhoc.net
LHS, RHS  Left hand side, Right hand side
W.L.O.G Without loss of generality
Notations
N The set of natural numbers
N* The set of natural numbers except 0
Z The set of integers
Y/ The set of positive integers
Q The set of rational numbers
R The set of real numbers
R+ The set of positive real numbers
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Chapter 1

AM-GM Inequality

1.1 AM-GM Inequality and Applications

Theorem 1 (AM-GM inequality). For all positive real numbers ay,as,...,a,, the
following inequality holds

a+ag+... +a, > W
> el

n

Equality occurs if and only if a; = ag = ... = ay,.

PrROOF. The inequality is clearly true for n = 2. If it is true for n numbers, it will be

true for 2n numbers because

ay+ag+ ... + asn > nYa160...0n + N YAn110012...02, = 20 Ffa1as...0,,

Thus the inequality is true for every number n that is an exponent of 2. Suppose that

the inequality is true for n numbers. We then choose

an = ; 8=a1+ax+...+a,_1;
n—1

According to the inductive hypothesis, we get

s a1a2...05_1" 8
s+ >n ’\‘/—Ll—"l—— = s> (n—1)"Yajas.--0n_1.

n—17—" n—1

Therefore if the inequality is true for » numbers, it will be true for n — 1 numbers.
By induction (Cauchy induction), the inequality is true for every natural number n.

Equality occurs if and only if a1 = as = ... = an.

\%

15
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As a matter of fact, the AM-GM inequality is the most famous and wide-applied
theorem. It is also indispensable in proving inequalities. Consider its strong applica-

tions through the following famous inequalities.

Proposition 1 (Nesbitt’s inequality). (a). Prove that for all non-negative real num-

bers a, b, c,
a N b n c_ S 3
b+c c+a a+b— 2
(b). Prove that for all non-negative real numbers a,b, c,d,

a b c d

> 2.
b+c+C+d+d+a+a+b_
Proor. (a). Consider the following expressions
a b c
§= b+c+c+a+a+b !
b c a
M= :
b+c+c+a+a+b !
N c a b

b+c+ c+a + a+b ;
We have of course M + N = 3. According to AM-GM, we get

a+b b4+c cH+a
M4+5= >3
+ b+c+c+a+a+b_3'

at+c a+b b+ec
N4+ S= >3
+ b+c+c+a+a+b_3’

Therefore M + N +2S > 3,and 25 > 3, or S > %

(b). Consider the following expressions

5 — a + b + c N d
" b4+c c+d d4a a+bd'’

b c d a
M = .
b+c+c+d+d+a+a+b’

N c d + a b

- b+c+c+d d+a+a+b ;
We have M + N = 4. According to AM-GM, we get

a+b b+ec c+d d4a
M+S-b+c+c+d+d—i.-a+a+b24;
a+c b+d a+c b+4d
N+S_b+c+c+d+d+a+a+b
_a+c at+c b+d b+d
“b4+c a+d c+d+a+b
4(a + c) 4(b + d) .
“atbtctd atbtetd 1
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Therefore M + N + 25 > 8, and S > 2. The equality holds if a = b = ¢ = d or
a=c¢,b=d=0o0ora=c=0,b=d.
\Y%

Proposition 2 (Weighted AM-GM inequality). Suppose that ay, as, ..., a, are positive

real numbers. If n non-negative real numbers xy, xa, ...,y have sum 1 then

a121 + a2x2 + ... + anxn > al'az’®...al".

SoLUTION. The proof of this inequality is entirely similar to the one for the classical
AM-GM inequality. However, in the case n = 2, we need a more detailed proof
(because the inequality is posed for real exponents). We have to prove that if z,y >
0, z4+y=1and a,b > 0 then

ax + by > a®bv.

The most simple way to solve this one is to consider it for rational numbers z,y,

m
then take a limit. Certainly, if z,y are rational numbers : z = o and y —

L_'_, (m,n € N), the problem is true according to AM-GM inequality
m n

ma +nb > (m + n)aﬁyﬁb#ﬂ = az + by > a®bY.

If 2,y are real numbers, there exist two sequences of rational numbers (rn)n>0 and

(8n)n>o0 for which r, — z, s, =y, 7, + 8, = L. Certainly
ar, + bs, > a™m b

or
arp +b(1 —r,) > a™b 7",

Taking the limit when n — 400, we have az + by > a*bv.
\Y%

The AM-GM inequality is very simple; however, it plays a major part in many in-
equalities in Mathematics Contests. Some examples follow to help you get acquainted

with this important inequality.

Example 1.1.1. Let a,b, ¢ be positive real numbers with sum 3. Prove that

Va+ Vb+e> ab+ be+ ca.
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(Russia MO 2004)
SOLUTION. Notice that
2(ab + bc+ ca) = (a 4+ b+ )2 —a® + % + 2.

The inequality is then equivalent to

Za2+22\/529,

cye cyc

which is true by AM-GM because

> a?+2) Va= Z(a +Va++va) >3y a=0.

cyc cye cye

\%

Example 1.1.2. Let z,y,z be positive real numbers such that xyz = 1. Prove that

z3 ye z

(1+y)(1+2) + 1+2)(1+2) + 1+2)1+y) ZZ'

3

w

(IMO Shortlist 1998)

SOLUTION. We use AM-GM in the following form:

x® 14y 142 _ 3z
> =
(1+y)(1+2)+ g T 8 =7

We conclude that

Z(1+y)(1+2)+ Z(1+‘”)>Z

cyc cyc

3

1 3
Z(1+y)(1+z) —42(2m_1)>_

cyc

The equality holds for z =y =2 = 1.
\Y

Example 1.1.8. Let a,b,c be positive real numbers. Prove that

(1+§) (1+%) (1+§) 22+2(m+\/%”).

(APMO 1998)
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SOLUTION. Certainly, the problem follows the inequality
z Yy + z > z+y+ 2z

y 2z z°= Yryz
which is true by AM-GM because

2z 2 2 3 3 3
3<£+g+i =<—+£ (2404 (Z245) > L 2
Yy oz oz Y z z x x Y Jryz  Yryz  Yzyz

\%

Example 1.1.4. Let a,b,c,d be positive real numbers. Prove that
16(abc + bed + cda + dab) < (a + b+ c+ d)*.
SOLUTION. Applying AM-GM for two numbers, we obtain

16(abc + bed + cda + dab) = 16ab(c + d) + 16cd(a + b)
<4(a+b)*(c+d) +4(c+d)(a+b)
=4(a+b+c+d)(a+b)(c+d)
<(a+b+c+d)d.

The equality holds fora =b=c=d.
\Y%

Example 1.1.5. Suppose that a,b, ¢ are three side-lengths of a triangle with perimeter
3. Prove that .
1 1 1 9
+ + > .
Va+b—c Vb+c—a Ve+a—b T ab+bc+ca
(Pham Kim Hung)

SOLUTION. Let z = Vbt c—a,y=Ve+a—bz=vVa+b—c Weget 22+ +2% =

3. The inequality becomes

1+1+1> 36
x oy oz 94 22y? 49222 4 2222

Let m = zy,n = yz,p = zz. The inequality above is equivalent to
(m+n + p)(m? + n? + p + 9) > 36 /mnp,
which is obvious by AM-GM because
m+n+p>3Ymnp , m?+n?+p* +9> 12mnp.

\%
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Example 1.1.6. Let ay,as, ...,a, be positive real numbers such that a; € [0,i] for all
i €{1,2,...,n}. Prove that

2"a1(a; + ag)...(a1 +as+ ... +a,) > (n+ l)a%ag...a%.

(Phan Thanh Nam)
SoLUTION. According to AM-GM,
vt o ()12 (2) sk (2)
L LD (i (s (s

Multiplying these results for every k € {1,2,...,n}, we obtain

n n k(k 4+ 1 k i o4
kl;Il(a1+a2+...+ak)2k1;Il(%g(%)m)

S I(ON

i=1

in which each exponent ¢; is determined from

Q= (i(ﬁin+(z’+1>1(z'+2>+"'+n(Tl+T>) - G‘nil) =2

ai Ci ai 2
Because a; <i Vi € {1,2,...,n}, (-—) > (-—) and
) )

n

nl(n+ 1)! ai\2 n+1
ai(a1 +ag)...(ay +as + ... + a,) > _(2"—_) H (7') = -a%a2..a’.
i=1 -

The equality holds for a; =14 Vi € {1,2,...,n}.
Y

Example 1.1.7. Let a,b, c be positive real numbers. Prove that

1 1 1 1
<
a3+b3+abc+b3+c3+abc+c3+a3+abc"

abc’
(USA MO 1998)
SoLUTION. Notice that a® + b* > ab(a + b), so

abc < abc _ c
a4+ 083+ " abla+b)+abe a+b4c
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Building up two similar inequalities and adding up all of them, we have the conclusion

abe + abe " abe <1
a3+ +abe B3B+S+abe B+ad+abe ™

Comment. Here is a similar problem from IMO Shortlist 1996:

 Consider three positive real numbers z,y, z whose product is 1. Prove that

zy Yz 2z
<1
25+ zy + 98 +ys +yz+ 25 +z5+z:c+:c5 -

\%

Example 1.1.8. Prove that x1z3...25 > (n — 1) if 21,22, ...,2n > 0 satisfy

LRI SR
142 142y 7 142z,

=1.

SOLUTION. The condition implies that

1 N 1 . 1 oz,
142, 142 7 14z, 14z,

Using AM-GM inequality for all terms on the left hand side, we obtain

Tp n—1

Y () | (E o W (e

Constructing n such relations for each term z;,s,...,Tn_1, %, and multiplying all

their correlative sides, we get the desired result.
\Y%

Example 1.1.9. Suppose that z,y, z are positive real numbers and x° +y° + 2° = 3.

Prove that
24 4 4
N
3 8 3=

SoLUTION. Notice that
(25 4 45 + 25)2 = 210 4 22595 4 410 4 24525 4 210 192555 = 9.
This form suggests the AM-GM inequality in the following form
4
10 :c_3 + 62°¢° + 3210 > 19255
y

Setting up similar cyclic results and adding up all of them, we have
100

g

4 4 4 o
10 (%+%+%) +3(z5 + 45 +2°)2 > 19 (:c% +y19 +z%).
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It suffices to prove that
215 +le0§Q +:sz)gQ > z° +y5+z5
which is obviously true because

3+10Y 2% =3 (1+192%) > 20) 25
cyc

cyc cyc

v

Example 1.1.10. Let a,b, ¢ be positive real numbers such that abc = 1. Prove that
a+b b+ec c+a
— > 3.
\/a+1+\/b+1 Yo

SoLUTION. After applying AM-GM for the three terms on the left hand side expres-

(Mathlinks Contest)

sion, we only need to prove that
(a+b)(b+c)(c+a)>(a+1)(b+1)(c+1),
or equivalent by (because abc = 1)
ab(a 4-b) + be(b+c¢) + ca(c+a) 2 a+ b+ c+ab+ be+ ca.
According to AM-GM,

2LHS + Zab = Z(azb +a?b+a%c+ac+be) > 5 Za.

cye cyc cyc
2LHS+Za = Z(a2b+a2b+b2a+b2a+c) > SZab.
cyc cyc cyc
Therefore
4LHS+2) "ab+ Y a>5) ab+4) ab
cyc cyc cyc cyc
=4LHS >4 "a+4) ab=4RHS.
cyc cyc

This ends the proof. Equality holds fora =b=c¢ =1.
\Y
Example 1.1.11. Let a,b,c be the side-lengths of a triangle. Prove that

(@+b=—0)%b+c—a)(c+a—b)F<a’bbe.
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SOLUTION. Applying the weighted AM-GM inequality, we conclude that

arbrclfa+b—c\" [b+ec—a ®feta—b\°
a b ¢
1 (a.a+b—c+b'b+c—a+c'c+a—b):1'

—a+4b+e a b c

[n other words, we have

(a+b—-c)(b+c—a)b(c+a—0b)° < a®bies.
Equality holds if and only if a =b=¢.

v

>

Example 1.1.12. Let a,b, ¢ be non-negative real numbers with sum 2. Prove that
a’b? + b2 + Pa? < 2.
SOLUTION. We certainly have

(ab+be+ ca)(a® +b° +¢*) 2D aP(b+c) =) ab(a® +b%) 22) a?b%.

cyc cye cyc

Applying AM-GM, and using a? + b? + ¢ + 2(ab + bc + ca) = 4, we deduce that
2(ab+be+ca)(a® + b2 + ) <4 = (ab+be+ ca)(a? + b2+ ) < 2.

This property leads to the desired result immediately. Equality holds for a = b =
1,¢ = 0 up to permutation.

v

Example 1.1.13. Let a,b, ¢,d be positive real numbers. Prove thal

1 + 1 + 1 + 1 S 4
a2+ab BP+be 2+ced d2+da T ac+bd

SoLUTION. Notice that

ac+bd a2+ab+ac+bd_1__ a(a+c)+ b(d+a) 1= atc bld+a)

= = 1.
a? + ab a(a + b) a(a + b) a+b a(a+d)

According to AM-GM inequality, we get that

1 atc b(d+a a+tc
v (Saia) = (Sori) + (S ers) = Ti

cyc cyc cyc




>
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Moreover,

a+c 1 1 1 1
= — - d I
2 oh (a+d(a+b+c+d)+(b+)(b+c+d+a>
4(a+c) 4(b+d)
~a+b+c+d a+b+c+d

Equality holds fora =b=c=4d.
v

Example 1.1.14. Let a,b, c,d, e be non-negative real numbers such that a +b+c+
d + e = 5. Prove that

abc+ bed 4 cde + dea + eab < 5.

SoLUTION. Without loss of generality, we may assume that e = min(e,b,c,d,e).
According to AM-GM, we have

abc + bed + ede + dea + eab = e{a + ¢)(b+ d) + be(a + d — €)
2 2
<e(a+c+b+d) +(b+c+a+d—e>
- 2 3
_e(5—e)?  (5—2¢)?°
T 1 T

It suffices to prove that

e(5—e)? N (5 —2¢)3

<
4 27 <5

which can be reduced to (e — 1)?(e + 8) > 0.
v

Example 1.1.15. Let a,b, ¢,d be positive real numbers. Prove that

e +
a C

(1 1 1 12>1 4, 9 N 16
b d/) T a?  a?24+b2 a2+ +2 a?+b%2 42 +d?r

(Pham Kim Hung)

SOLUTION. We have to prove that

i+—1—+i+22> 4 + 9 16
b2 ' 2 ' d? aymab_a2+b2 a2+b2+02+a2+b2+02+d2'
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By AM-GM, we have

2, s
ab =™ a2 402’

2 2 8 8
cz_c+EZac+bc_a2+b2+c2;
PR I R N s R

2 2 2 18 16

i H i Bl > .
d T Al Wt d i iR r

Adding up these results, we get the conclusion immediately.

Comment. 1. By a similar approach, we can prove the similar inequality for five

numbers. To do this, one needs:

2 2 2 2
a? b2+’ +d*4e? = (a2 + %) + (b'“’ + %) + (c'~’ + %) + (d'~’ + %) > ad+bd+cd+ed.

2, The proof above shows the stronger inequality:

*

atrteta _+a2+b2+a2+b2+02+a2+b2+c2+d2'

1 1 1 1'“’>1 4 12 18
b d) — a?

3. I conjectured the following inequality

* Let ay,as,...,a, be positive real numbers. Prove or disprove that

11 1\%2 1 4 n?
—t—tot— ] 2ottt
1

a? + a3 a?+a3+..+a2

\%
Example 1.1.16. Determine the least M for which the inequality
lab(a? — b?) 4 be(b? — ¢2) + ca(c® — a?)| £ M(a? + b + ¢*)?
holds for all real numbers a,b and c.
(IMO 2006, A3)

SOLUTION. Denote x = a —b,y = b—c,2 = ¢c—a and s = a + b + ¢ Rewrite the

inequality in the following form
9|szyz| < M(s? + 2% 4 y2 + 2%)?

in which s, z,y, z are arbitrary real numbers with z 4+ y 4 2 = 0.
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The fact that s is an independent variable suggests constructing a relationship between
zyz and 22 + y? + 22 at first. There are two numbers, say = and y, with the same
sign. Assume that z,y > 0 (the case z,y < 0 is proved similarly). By AM-GM, we
have .
(z+v)
223

with equality for z = y. Let ¢t = z + y. Applying AM-GM again, we get

|szyz| = |szy(z + y)| < |s] -

(282 4 3t2)4

2520 = 25% 1% . 2 £ < 4

and therefore
3 .\ 2
4/2|s|td < (32 4 §t2) <(s2+2®+y 4+ 2)? (2)

Combining (1) and (2), we conclude
1
16v2

9v/2 92

This implies that M > BV To show that M = 25 is the best constant, we

[szyz| < (82 4+ 22 + y? + 2%)2

need to find (s,z,v, 2), or in other words, (e, b, ¢), for which equality holds. A simple

3 3
calculation gives (a,b,¢) = [1——,1,14+ —].
g ( ) V2

V2
v

The most important principle when we use AM-GM is to choose the suitable
coefficients such that equality can happen. For instance, in example 1.1.2, using AM-
GM inequality in the following form is a common mistake (because the equality can

not hold)

73

A+y)(1+2)
It’s hard to give a fixed form of AM-GM for every problem. You depend on your

+@+1)+(2+1) 2 3z

own intuition but it’s also helpful to look for the equality case. For example, in the
above problem, guessing that the equality holds for x = y = z = 1, we will choose the

coefficient 3 in order to make the terms equal

23 y+1 z+4+1 3z
+ > =
(1+y)(1+2) g 178 271

For problems where the equality holds for variables that are equal to each other,

it seems quite easy to make couples before we use AM-GM. For non-symmetric
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problems, this method sometimes requires a bit of flexibility (see agam examples
1.1.13,1.1.14 and 1.1.16). Sometimes you need to make a system of equations and solve
it in order to find when equality holds (this method, called ”balancing coefficients”,

will be discussed in part 6).

1.2 The Cauchy Reverse Technique

In the following section, we will connect AM-GM to a particular technique, called
the Cauchy reverse technique. The unexpected simplicity but great effectiveness are

special advantages of this technique. Warm up with the following example.

Example 1.2.1. Let a,b, ¢ be positive real numbers with sum 3. Prove that
a b c 3
> =,
1+ b2 + 1+¢2 +1+a2 -2

(Bulgaria TST 2003)

SoLUTION. In fact, it’s impossible to use AM-GM for the denominators because the
sign will be reversed

a b ¢ a b c 3
— = >_-1
T+67 " M

< —
1+¢:2+1+a2 _2b+2c 2a ~ 2
However, we can use the same application in another appearance

a ab? _ﬁ ab
1+62 T 132 =" T2

The inequality becomes

N w

1
PRI E
cyc

cyce cyce

since 3 (Z ab) < (Z a)2 =9.

This ends the proof. Equality holds fora =b=c=1.
Comment. A similar method proves the following result

* Suppose that a,b,c,d are four positive real numbers with sum 4. Prove that

a b c d

> 9.
T T ire T ire T1ra s
v

This solution seems to be magic: two apparently similar approachs of applying

AM-GM bring about two different solutions; one is incorrect but one is correct.
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So, where does this magic occur? Amazingly enough, it all comes from a simple

representation of a fraction as a difference

a ab?
=qa —

14 b2 142

2
With the minus sign before the new fraction 1—1?, we can use AM-GM inequal-

ity in the denominator 1+ b? freely but we get the correct sign. This is the key feature
of this impressive technique: you change a singular expression into a difference of two
expressions, then estimate the second expression of this difference, which has a minus

sign.

Example 1.2.2. Suppose that a,b,c,d are four positive real numbers with sum 4.

Prove that
a " b n c N d >0
1+b%2¢ 14c%d  14d%a 1+4a%h—

(Pham Kim Hung)

>

SOLUTION. According to AM-GM, we deduce that

a ab’c ab’c . aby/c

1+b2c 1462 =" fe

_bva-ac > g b(a + ac)
2 = 4

=a

According to this estimation,

1
Zl+b2 Za——Zab—ZZabc

cyc cyc cye

By AM-GM inequality again, it’s easy to refer that

1
Sach(Te) <1 Yaes f(5e) -
cyc cyc ‘cyc cyc
Therefore
¢ b 4 i ibrerd—2=2
1+bc 1+cd " 1+dea  1xamp=0totet :

\Y%

Example 1.2.3. Let a,b,c be positive real numbers. Prove that

ad b3 3 d3 b d
I A + >atotetae
a?+b b2+ ¢ 2+d2 d?2 4 a2 2
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SOLUTION. We use the following estimation

al a ab? > ab? b
—_ = —— - =qa—- -,
a? + b? a? + b2 — 2ab 2
Comment. Here is a similar result for four variables
a? b4 A d? at+b+tc+d
3 3 t33 + 3 5t 3 32 o ’
a® +2b B4+23  AS+2d d3 + 2a 3

\%

Example 1.2.4. Let a,b, ¢ be positive real numbers with sum 3. Prove that

a? b? c?

>
croz "1z teraa 21

SOLUTION. We use the following estimation according to AM-GM

a? 2ab? 2ab? 2(ab)?/?
—_— =g —— > — ——=qa — )
a+ 2b? a+ 262~ 3 ath 3

which implies that

a? 2 2
Do 2D 03D (ab)3.
cyt

cye aye

It suffives to prove that
(b} +1(be)*® + (ea)® < 3.
By AM-GM, we have the desired result since

3y 22y a4} ab=7) fa+btat)> !BJEIQafb'D;%.

&yc Zye cye cyc cyc

Comiment. The inequality is still true when we dhange the hypothesisa +b+c= 3
it @b +be +ca.= § or even yia+ b+ /¢ = 3. (the second case is a it more difficult).
These problems are proposed to you; they will not be selved here.

v

Example 1.2.5, let.e,b, c be positive real mumbers with sum 8. Prove thot

a? N lia 4 o -
a+ 2% b4 2B e+ 208 T

BoLumioN. Using the same technigue as in exarmple 1.2.4, we only need to prove that

bva? +eVbE +av e < 3.
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According to AM-GM, we obtain

BZa > Za+22ab=2(a+ac+ac) 23Za\3/c_2,

cyc cyc cyce cyce cyc

and the desired result follows. Equality holds fora =b=c¢=1.
\Y%

Example 1.2.6. Let a,b, c be positive real numbers which sum up to 3. Prove that

a+1 b+1 c+1
> 3.
b24+1 241 " @241 —

SOLUTION. We use the following estimation

1 b? 1
atl _ o Bat))

b (a +1) ab+b
Ea >a+l—-——==a+1- .

b2+1 ~ 2b 2

Summing up the similar results for e, b, ¢, we deduce that

a+1 1 1
>3+5Y a— Y ab>3.
) 1_3 5 a > ab> 3

cyc cyc cyc

Comment. Here are some problems for four variables with the same appearance

e Let b, c,d be four positive real mumbers with sum 4. Prove that

o+ 1 b1 ¢4 1 d 41

|b2+ﬂ.++‘|C2-+1+d2+[1++~|aaﬂ']. 4

v

w Let a,b,c, d be four positive weal numbers with sum 4. Prove that

1 1 1 1

griteteri @ 2
v

Example 1.2.7. Let a,b,c be positive meal numbers with sum 8. Prove thot

1 1 1
>
14 2b%¢ + 1 4 2¢%a + 14 2a2b ~

SoLuTIoN. We use the fdllowing estimation

.

Ly e 2 20b4 o)
L4 2b%c 14282 = 3 = R
v

Example [L.2.8. Leta,b, c,d be non-negative neal numbers with sum 4. Prove that

1 # b N 1 #-he n 1+ed R il + da
148262 14c2d? ' 144202 1 40282

4.

v
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(Pham Kim Hung)

SOLUTION. Applying AM-GM, we have

1+ ab 1 (1+ ab)b?c?

1
- = -1 "7 " >1 - = b)be.
T 5202 (1+ ab) T e 2 + ab 2(1+a)c

Summing up similar results, we get

Y 11_++b‘2’i’2 Z4+Zab—%2bc(1+ab) :4+% (Zab—zab%).

cyc cyc cyc cyc cyc

It remains to prove that
ab + be + cd + da > ab?c + bc*d + cd®a + da’b.
Applying the familiar result zy 4+ yz + 2zt + tz < %(.'L' +y+2z2+ t)2, we refer that
(ab + be + cd + da)? > 4(ab’c + bPd + cd?a + da®b);

16 = (a + b+ c+d)? > 4(ab + bc + cd + da).

Multiplying the above inequalities, we get the desired result. The equality holds for
a=b=c=d=1ora=c=0 (b,d arbitrary) or b=d = 0 (a, c arbitrary).

\%

Example 1.2.9. Let a,b, ¢ be positive real numbers satisfying a® +b* +¢* = 3. Prove

that
1 1 1

> 1.
a3+2+b3+2+

A+2~
(Pham Kim Hung)

SOLUTION. According to AM-GM, we obtain

3 1 _E_lz_“i_
a3+2 2 2cyca3+1+1
3
2

cyce






Chapter 2

Cauchy-Schwarz and Holder

inequalities

2.1 Cauchy-Schwarz inequality and Applications

Theorem 2 (Cauchy-Schwarz inequality). Let (aq,as,...,a,) and (b, b,...,b;) be

two sequences of real numbers. We have
(a2 + a2 + ... + a2) (b2 + b2 + ... + b2) > (a1by + agby + ... + anb,)?.

The equality holds if and only if (a1,as,...,a,) and (by,by,...,b,) are proportional
(there is a real number k for which a; = kb; for all i € {1,2,...,n}).

Proor. I will give popular solutions to this theorem.

First solution. (using quadratic form) Consider the following function
F(@) = (@12 — b1)? + (aoz — b2)® + ... + (anz — bp)?
which is rewritten as
f(@) = (a® + a3 + ... + a?)z? — 2(ar1by + agby + ... +anby)z + (b3 + b3 + ... +b2).
Since f(z) > 0 Vz € R, we must have Ay < 0 or
(a2 + a2 + ... +a2) (b2 + b3 + ... + b2) > (a1by + azbg + ... + anby)?

The equality holds if the equation f(2) = 0 has at least one root, or in other words

(a1,a9,...,a5) and (b, by, ..., b,) are proportional.

- 33
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Second solution. (using an identity) The following identity is called Cauchy-
Schwarz expansion. It helps prove Cauchy-Schwarz inequality immediately

(02 + a2+ ... +a2) (b2 + b3 + ... +b2) — (arbs +aby + ... + anbn)? = > (asb; —a;bi)?.
i,7=1
Third solution. (using AM-GM ) This proof is used to prove Hélder inequality as
well. Notice that, according to AM-GM inequality, we have
@
a?+a2+..+a2 b3+ b2 4.+ b2
2|a;b;)
~ V(e +aZ + ... +a2)(b + b3 + ... + b2)

Let ¢ run from 1 to n and sum up all of these estimations. We get the conclusion.
\Y

Which is basic inequality? The common answer is AM-GM. But what is the most
original of the basic inequalities? I incline to answer Cauchy-Schwarz inequality.
Why? Because Cauchy-Schwartz is so effective in proving symmetric inequalities,
especially inequalities in three variables. It often provides pretty solutions as well.

The following corollaries can contribute to the many applications it has.

Corollary 1. (Schwarz inequality). For any two sequences of real numbers
(@1,a9,...,a,) and (b1, ba,...,bs), (b; >0 Vi€ {1,2,...,n}), we have

of o L ang (mtart..tan)
by by T by T bitbe 4t by

SoLUTION. This result is directly obtained from Cauchy-Schwarz.
\Y%

Corollary 2. For every two sequences of real numbers (a;,as,...,a,) and

(b1, b2, ...,br), we always have

\/af + b? + \/ag + b2+ . +/a2 + b2 > (ag + ..+ an)2 + (b1 + ... +b,)2

PRrROOF. By a simple induction, it suffices to prove the problem in the case n = 2. In

this case, the inequality becomes

\/af+b¥ +\/a§+bg > \/(al + ag)? + (b + b7)?,
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Squaring and reducing similar term, it simply becomes Cauchy-Schwarz
(a1 + a3)(61 +b3) > (arby + azba)™.
Certainly, the equality occurs iff (a,,as,...,a,) and (b1, by, ..., b,) are proportional.

\%

Corollary 3. For any sequence of real numbers a1, as,...,a, we have

(a1 +ag + ...+ a,)? < n(a? + a2 + ... +a2).
ProOF. Use Cauchy-Schwarz for the following sequences of n terms

(a1,a9,...,an) , (1,1,...,1).
\Y

If applying AM-GM inequality is reduced to gathering equal terms, (in the
analysis of the equality case) the Cauchy-Schwarz inequality is somewhat more
flexible and generous. The following problems are essential and necessary because
they include a lot of different ways of applying Cauchy-Schwarz accurately and
effectively.

Example 2.1.1. Let a,b, ¢ be non-negative real numbers. Prove that

a? — be b? — ca c? —ab
2 D) 5+ 2 7t o2 2 5 = 0.
202 + b2 + ¢ 262 +c* +a 2¢2 +a% 4+ b

(Pham Kim Hung)

SOLUTION. The inequality is equivalent to
2
et g
a? 4+ b? + 2¢2
cyc
According to Cauchy-Schwarz inequality, we have

a + b)? a? b?
( < +
a2 +b24+2c2 — a2 42 b2 4%

That concludes

(a+b)2 a2 b2
< _ —— =3
Za.2+b?+2c2 _Za2+c2+czwb?+c2

cyc cyc

Equality holds for a =b = ¢ and a = b, ¢ = 0 or its permutations.

\%
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1 1 1
Example 2.1.2. Suppose that z,y,z > 1 and 2 + " + P 2. Prove that

VZty+z>2Ve—1++/y—1+Vz—1.
(Iran MO 1998)

SoLUTION. By hypothesis, we obtain

According to Cauchy-Schwarz, we have

(5 (52)- ()

cyc cyc cyc cyc

which implies

VEty+z>2Ve—14++/y—1+Vz—1.
\%

Example 2.1.8. Let a,b, ¢ be positive real numbers. Prove that

as b P
>1
a3+b3+abc+b3+c3+abc+c3+a3+abc"

(Nguyen Van Thach)

b a
SOLUTION. Let = —,y = - and 2z = —. Then we have
a c

c
b
ad _ 1 _ 1 _ Yz
a3+ b3 +abe 1+23+ 2 T 14 23+222 yz+ a2+ z2

By Cauchy-Schwarz inequality, we deduce that

Z yz (zy + yz + zz)?

> .
S yz+ 22+ 22 = yz(yz + 22 + zy) + 22(2z + y2 +yz) + zy(zy + 22 + 2v)

So it suffices to prove that

(zy + yz + 22)2 > Z yz(yz + z? + zz) & Z z%y% > Z z%yz,

cyc cyc cyc

which is obvious. Equality holds for e =y =2 ora=b=c.

\%
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Example 2.1.4. Let a,b, ¢ be three arbitrary real numbers. Denote

z=vb? —bc+c?, y=vVc2—ca+a?, z=1+a?—ab+ b2

Prove that
2y +yz + 22 > a® + b2 + .

(Nguyen Anh Tuan, VMEO 2006)

SOLUTION. Rewrite z,y in the following forms

o 3c3+(b 0)2 B 3c2+( 0)2
V72 2) Y=V T T\ 73

According to Cauchy-Schwarz inequality, we conclude

2
Ty > 3% + %(2b— ¢)(2a — ¢),

which implies
3 2 1 _ 2
CEyC Ty > 2 CEyC ¢+ 1 CEyC (2b—c)(2a —¢) = CEyC a’.

Comment. By the same approach, we can prove the following similar result
 Let a,b, ¢ be three arbitrary real numbers. Denote
2=Vb +be+ 2, y=/E+cata?, z=1+/a®+ab+b2
Prove that |
zy+yz + 2z > (a+b+ )2
\%

Example 2.1.5. Let a,b, c,d be non-negative real numbers. Prove that

a b c d 4
> .
b2 + ¢? + d? Jra?+c2+d2 Jra?+b?+d2+a?+b?+c2 “a+bt+c+d
) (Pham Kim Hung)

SOLUTION. According to Cauchy-Schwarz, we have

( - b ¢ ., ¢ )(a+b+c+d)

b2 + 2 + d? +a2+cz+d2 a2 4+b24+d? a2 +b2+ 2

a? b? c? d? ‘
> - -
- b2+c2+d2+ a2+02+d2+ a2+b2+d2+ a2+b2+02

2
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/ a? 5
_ > 2.
f‘:yc b2 +c?+d? ~
According to AM-GM
/b2+c2+d2<1 b2+c2+d2+1 I L
a? =2 a? B 2a? '

We can conclude that

a? 202
1/——> =2
; b2 + ¢2 + d? "%C:aﬁ—}—bz-}—cg-}—d2

which is exactly the desired result. Equality holds if two of four numbers (a,b, ¢, d)

It remains to prove that

are equal and the other ones are equal to 0 (for example, (a,b, ¢,d) = (k, k, 0,0)).
Comment. Here is the general problem solvable by the same method.

* Let ay,aq,...,a, be non-negative real numbers. Prove that

a1 [13)) 02 4

+ + ...+ 2 > .
ai+.+a2  d?+ai+..+a2 a?+..+a | Tatayt..+tan

\%

Example 2.1.6. Prove that for all positive real numbers a,b, ¢,d, e, f, we alwyas have

a,+b+c+d+e+f>3
b+c c+d d+e e+f fH+a a4bT

(Nesbitt’s inequality in six variables)

SOLUTION. According to Cauchy-Schwarz inequality

Z a '"Z a® S (a+b+c+d+e+ f)?
b+c_Cycab—}—ac_ab+bc+cd+de+ef+fa+ac+ce+ea+bd+df+fb'

cyc

Denote the denominator of the right fraction above by S. Certainly,
2S=(a+b+ct+d+e+ f) —(a+d)?—(b+e)—(c+ f)
Applying Cauchy-Schwarz inequality again, we get
(1+1+1)[(a+d)?+ (b+e)? +(c+f)2].2 (a+b+c+d+e+ f)>2
Thus 25 < g(a +b+c+d+ e+ f)?, which implies the desired result.

v
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Example 2.1.7. Two real sequences (a1, a9,...,a,) and (b1, ba,...,b,,) satisfy
a?vait. ol =b bR .+ =1,
Prove the following inequality
(a1by — ash1)? < 2]a1by + agbs + ... + anb, — 1]
(Korea MO 2002)

b? =1 yields
1

7
SoLuTION. By Cauchy-Schwarz, the condition ) a? =

7
=1 =

1> a1by +agbs + ... +anb, > —1.

According to the expansion of the Cauchy-Schwarz inequality, we have

(@4 +a2) (B 4. +B2) = (arbr 4.+ anbp)? = Y (aibj—abi)? > (a1by — asby)?
i,7=1
or equivalently

(1 - Z aibi) (1 + Zaibi) Z (albg - a2b1)2.
=1

i=1

That concludes
2|a1b1 +agbg + ... + anb, — ]_| > (albg - a2b1)2.
\Y%

Example 2.1.8. Suppose a,b, c are positive real numbers with sum 3. Prove that

\/a+\/b2+c2+\/g+\/c2+a2+\/c+\/a2+b223\/\/§+1.

(Phan Hong Son)

SOLUTION. We rewrite the inequality in the following form (after squaring both sides)

Z\/lm+2z\/(a+ b2+c2) (b+m)29\/§+6.

cyc cyc

According to Cauchy-Schwarz inequality, we have

Z\/(a+ b2+c2)(b+x/m)2§; <a+b;§c) (b+c;§a)

cyc
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= 25 [(VE-1)a+3) (v2-10+3)

cyc

> 25 ((VE-1) Vab+3) = (1- 55 ) T vab+ .

cyc cyc

It remains to prove that

Z\/a2+b?+(2—\/§)2\/a_b26.

cyc cyc

This last inequality can be obtained directly from the following result for all z,y > 0
4 + 4 + (2—\/5) zy > z° + 2.
Indeed, the above inequality is equivalent to )
24yt > (:1:2 + 9% — (2— \/5) :L'y)2 & 22— V2)zy(z —v)2 >0
which is obviously true. Equality holds for a = b = ¢ = 1.
\Y%

Example 2.1.9. Suppose a,b, c are positive real numbers such that abc = 1. Prove
the following inequality

1 1 1
> 1.
a2+a+1+b?+b+1+c2+c+1—

SOLUTION. By hypothesis, there exist three positive real numbers z,y, 2 for which

yz Trz Ty
0.=—2, b= —) Cc= o
X Yy z

The inequality can be rewritten to

4

x
>1

cyc

According to Cauchy-Schwarz, we have

LS (22 + 2 + 22)2
Tzt byt 2 b ayz(z oy + 2) + 229% + y222 + 2222

It suffices to prove that

(w2 +y2+ 22)2 >t byt 424 zyz(z+y+2) + w2y2 + y%2? + 2222
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which is equivalent

Zazzyz > :cyzz:c & Zzz(az—y)2 > 0.

cye cye cye

Equality holds for z =y =2, ora=b=c¢=1.
\Y

Example 2.1.10. Let a,b, ¢ be the side-lengths of a triangle. Prove that

a + b + c > 1
3a—b+c 3b—c+a 3c—a+b™

(Samin Riasa)

SoLuTioN. By Cauchy-Schwarz, we have
a 4a
42 3a—b+c _Z3a—b+c
cyc cye
a+b—c
=3+ Z 3a—b+c
(a+b+c)?

Y(a+b—c)(Ba—b+¢)

cyc

>3+

Equality holds for a = b =c.
\Y

Example 2.1.11. Let a, b, ¢ be positive real numbers such thata <b< canda+b+
¢ = 3. Prove that

V32 +1+vV5a2+3b2+1+1/7a2 + 502 + 32 +1<0.
(Pham Kim Hung)

SoLUTION. According to Cauchy-Schwarz, we have

2
(\/3(12 T1+/5a2 + 38 + 14 /7a2 + 562 + 362 +1) =

BT+ - Vil 1 AT T
:(%- 6(3a +1)+\/Z V4(5 2+3b2+1)+\/§ \/3(7a2? + 5b2 + 3 2+1))

< (% + i- + %) [6(3a% + 1) + 4(5a% + 3b% + 1) + 3(Ta? + 5b° + 3¢* 4 1)].
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It remains to prove that

59a2 + 27b% + 9¢% < 95.
Notice that a < b < ¢, so we have

ab+ be + ca > 2ab + b > 2a% + b?

or

502 4+ 302+ < (a+b+c)? =9 = 592+ 27b% + 9¢? < 95,
since a < 1. Equality holds for a = b = ¢

Vv

Example 2.1.12. Let a,b, ¢ be positive real numbers with sum 1. Prove thail

14 14b 14c¢c _2a 2b 2c
<44 =
l1—a 1-5b l—c_b+c+a

(Japan TST 2004)

SoLUTION. Rewrite this inequality in the form

a a a a 3 ac 3
<S4 2 > 2 > =
+Zb+c—§£b < Xy:(b b+c)_2 C 210”2

cye

N we

According to Cauchy-Schwarz,

2,2 ' . 2
Z a“c >(ab+bc+ca) >3

ac
; bb+c) abc(a+¢) = 2abe(a +b+¢) = 2

cye
Equality holds if and only if « = b = ¢.
\Y
Example 2.1.13. (). Prove that for all non-negative real numbers z,y, z
6(z +y — 2)(z? + y° + 2%) + 2Tzyz < 10(z® + % + 22)¥/2
(22). Prove that for all real numbers x,y, z then

6(z+y+ 2)(z? + 4 + 2?) < 2Tzyz + 10(2? + % + 22)3/2,

(Tran Nam Dung)
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SOLUTION. (i). For this part, it’s necessary to be aware of the fact that the equality
holds for x = y = 2z up to permutation. This suggests using orientated estimations.

Indeed, by Cauchy-Schwarz, we deduce that
10(x? + 92 + 22)32 —6(z+y — 2)(a® + v + 22)

= (z? +y2+ 2?) (10\/:c~+y + 22 — 6:c+y—z))
= (2% 4y +z2)( Vi(x?2 + 92 +22)(22 + ')2+12)—6(:r:+y-z))

10(2z + 2J + z)

—6(z+y~ 2))

> (z? +¢°
10(z® + y? + 22) 2:L+2y+282)
3
Then, according to the weighted AM-GM inequality, we deduce that

2 ) 5q,8,2
9 2 9 __ T y -»-2 g:ItyZ
°+y“+z —4~-—4 +4-—4 +222>9 Ve

2x + 2y + 282 = 2z + 2y + T- 42 > 94/(22)(2y)(42)7 > 9v/48zy2".

Therefore

10(z? + 32 + 22)¥2 —6(z + y — 2)(z* + ¥ + 27) > 2Txy2.

(i7). The problem is obvious if z = y = z = 0. Otherwise, we may assume that
22 + y? + 22 = 9 without loss of generality (if you don’t know how to normalize an

inequality yet, yake a peak at page 120). The problem becomes
2z +y+2) <zyz + 10.
Suppose |z| < |y| < |#|- According to Cauchy-Schwarz, we get
[2(z + ¥ + 2) — 2y2]? = [(2(z +y) + (2 — zv)2]*
< (@ +9)? +2°) (2 + (2 -2w)%)
= (9 + 2zy)(8 — 4zy + x%y?)
=72 — 20zy + z%y? + 2233
=100+ (zy +2)*(zy — 7).
Because |z| < |y| < |2, 22 >3 = 2zy < 2? +3*> <6 = 2y — T < 0. This yields
(2(z+y+2)— :zsyz)2 <100 = 2(x+y+ 2) <104 zy=.
Equality holds for (z,y, z) = (—k, 2k,2k) (Vk € R) up to permutation.
\Y
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Example 2.1.14. Let a,b, ¢, d be four positive real numbers such that 7% =abed > 1.

Prove the following inequality

ab+1 be+1 cd+1 da+1 _ 4(1+72)
> .
et b+l o4l A+l = i+v

(Vasile Cirtoaje, Crux)

SoLUTION. The hypothesis implies the existence of four positive real numbers z, y, 2,¢

such that
Ty Tz rt T

z ' Y 2 t
The inequality is therefore rewritten in the following form

SR D | s T, 474D
pos T+ o ™+ T+
2
We need to prove that A+ (72 —1)B > £(7‘+—+11), where
T+ z z
—§ry+z ’ 2ry+z'

By AM-GM, we have of course

ar zy+ 8(zz+ut) = [4(7'—1)(:E+Z)(y+t)] +4[(z+z)(y+t)+2(zz+yt)]

2 2 2
coon (5 (5 oo (59

According to Cauchy-Schwarz, with the notice that » > 1, we conclude

1 1 1 1
A=
(z+2) (ry+z+rt+z)+(y+t) (r:c+y+rz+t)

dztz) | 4+1)
T zHz4ry+rt y+it4rectrz
dz+y+z+1t)? 5 _8
T (4?4 (Yt oar(z+2)(y+t) T r+ 1]
(z+y+z+1)°
2(ry+z)+tlrz +y) +z(rt + 2) + y(rz + 1)
(z+y+241)? 5 _4
ey +yz+2t+tz)+ 2(zz+yt) “r+1’

and the conclusion follows. Equality holds fora =b=c=d =r.

\Y
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Example 2.1.15. Let a,b,c be non-negative real numbers. Prove that

a? b? c? 1
2 7t 13 7 T 2 2 3
a?+2(a+b)2?  bB2+2(b+c) 2 +2(c+a) 3

(Pham Kim Hung)

b c a
SoLUTION. We denote z = —,y = = o The problem becomes
a c

1 1
Z1+2(a:+1)2 =3

cyc

Because zyz = 1, there exist three positive real numbers m, n, p such that

It remains to prove that

Z m S 1
m4 +2(m? + np)? T 3

cyce
According to Cauchy-Schwarz, we deduce that

LHS > (m” + n® + p*)"
~ mA + 0t +pf + 2(m? + np)? + 2(n2 + mp)? + 2(p? + mn)?’

Since we have

2
3 (Zmz) —Zm4—22(m2 +np)2 :§:m2(n—p)2 >0,

cyc cyce cye cye

the proof is finished. Equality holds for a = b = c.
\Y

Example 2.1.16. Let a,b, ¢ be non-negative real numbers. Prove that

L b I >£ 1 + 1 + 1 )
B+ a2+ a?+b T 5\b+tc ct+a a+bd/)’
(Pham Kim Hung)

SoLUTION. Applying Cauchy-Schwarz, we obtain
a
RO a(b? + 02)> > (a+b+e)
(Zota) (2

It remains to prove that

a?+ b+ & + 3(ab+ be + ca)
ab(a +b) + be(b + ¢) + ca(c+ a) + 2abe’

(a+ b6+ c)?
ab(a + b) + be(b+ ¢) + ca(c+a)

>4
-5
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Let S=Y a2, P=Y aband Q =Y ab(a +b). The above inequality becomes

cyc cyc cyc

5(5 +2P) S 4(S + 3P)
Q ~ Q@+ 2abe

Clearly, we have

& SQ + 10abeS + 20abeP > 2PQ.

PQ =Y d’t*(a+b)+ 2abc(S + P),

sym
SQ =Y abla+b)(a®+b%) 22 a®b*(a+b).
sym sym

This finishes the prof. Equality holds for ¢ = b,¢ = 0 up to permutations.
\Y

Like with the AM-GM inequality, there is no fixed way of applying the Cauchy-
Schwarz inequality. It depends on the kind of problem and on how flexible you are
in using this inequality. A consistent application of Cauchy-Schwarz, the Holder
inequality is, in fact, a typical extension. Although Holder is somehow neglected
in the world of inequalities, almost disregarded in comparison with AM-GM or
Cauchy-Schwarz, this book will emphasize this inequality’s importance. I place
Holder inequality in a subsection of the Cauchy-Schwarz inequality because it is
a natural generalization of cauchy-Schwarz and its application is not so different

than Cauchy-Schwarz inequality’s application.

2.2 Holder Inequality

Theorem 3 (Holder inequality). For m sequences of positive real numbers

(@1,1,01,2, ...y @1 m), (G2,1,02,2,..4,20),- - -, (Qm,1,@m,2y veeey @), we have

Equality occurs if and only if these m sequences are pairwise proportional. Cauchy-

Schwarz inequality is a direct corollary of Holder inequality for m = 2.

Corollary 1. Let a,b, ¢, z,y, 2,t,u,v be positive real numbers. We always have

(a® + b2+ 3)(2® + y* + 23) (£ + «® + v®) > (azt + byu + c2v)®.



2.0. Cauchy-Schwarz and Hélder inequalities 47

Proor. This is a direct corollary of Holder inequality for m = n = 3. I choose this
particular case of Holder for a detailed proof because it exemplifies the proof of the

general Holder inequality.

According to AM-GM, we deduce that

3

SR S SNRD DRSS AHS pR.

a3+ 3 23 4 y3 + 23 Zm3+m3+ 3

P
cyc cyc cyc

3azm
223 3 3 3\(..3 3 3 3 3 3)°
/(a3 + 63 + ) (23 + 33 + 23)(m3 + n3 + p3)

cyce

That means

azm +byn + czp < V(a3 + b3 + S3) (23 + y3 + 23)(m3 + n3 + pd).
\%

Corollary 2. Let ay,aq, ...,a, be positive real numbers. Prove that

(1+ a1)(1 +ag)..(1 +an) > (1 + Yaras—an)".

ProOF. Applying AM-GM, we have
1 + 1 I 1 n
1+a;  1+a 7 14an = /I +a)d +a2)..(1+an)

a1 as an n Hfa1aq...an

+ bt :
1+ aq 14+ as 1+ Gn — V(l +O.1)(1 +a2)...(1 + an)

\%

These two inequalities, added up, give the desired result.
\Y

Why do we sometimes neglect Holder inequality? Despite its strong application,
its sophisticated expression (with m sequences, each of which has n terms), makes it
confusing the first time we try using it. If you are still hesitating, the book will try
to convince you that Holder is really effective and easy to use. Don’t be afraid of
familiarize yourself with i1t! Generally, a lot of difficult problems turn into very simple

ones just after a deft application of Holder inequality.

Example 2.2.1. Let a,b, ¢ be positive real numbers. Prove that

a b c

+ + 21
Va2 +8bc Vb2 + 8ac V2 + 8ab

(IMO 2001, A2)
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SoLuTION. Applying Holder inequality for three sequences, each of which has three
terms (actually, that’s corollary 1), we deduce that

cyc cyc cye
So it suffices to prove that
(@+b+c)*>> a(a® + 8be)
cyce
or equivalently
cla—b)2 +ab—c)? +blc—a)?>0.
\Y

Example 2.2.2. Let a,b, ¢ be positive real numbers such that abc = 1. Prove that

a b c

+ + >
Vi+b+e Vi¥c+a VT+a+b
b c

a
+ + >1
VT+b2+c2 VT+E+a?2 VT+aZ+52
With the same condition, determine if the following inequality is true or false.
a b c
=+ + >1
VIi+bB+ed VT+E+a®  VT+a®+1b3
(Pham Kim Hung)

SoLUTION. For the first one, apply Hélder inequality in the following form

(Z__'?—\/_%)—Tc) (;ﬁ) (Za(7+b+c)) > (a+b+0)

cye cyc
It’s enough to prove that
(a+b+c)>T(a+b+ c)+2(ab+ be+ ca).
Because a + b + ¢ > 3Vabe = 3,

2
(a+b+c)327(a+b+c)+§(a+b+c)227(a+b+c)+2(ab+bc+ca).

For the second one, apply Hdlder inequality in the following form

(S orrirra) (S vmime) (S w0 0) 2w

cye
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On the other hand

-

> a(T+ 8+ %) =T(a+b+c)+ (a+b+ c)(ab+ be+ ca) — 3abe

cyc

S7(a+b+c)+%(a+b+c)3—3§ (a+ b+ c)3.
Equality holds for a = b = ¢ =1 for both parts.

The third one is not true. Indeed, we only need to choose a — 0 and b = ¢ — 400, or
namely, a = 1074, b = ¢ = 100.
\Y%
Example 2.2.3. Let a,b, ¢ be positive real numbers. Prove that for oll natural numbers
k, (k > 1), the following inequality holds
P R X Y ok bk o
bk + ok + ak Z ph—1 + ch—1 + ak—-1"

SOLUTION. According to Holder inequality, we deduce that

ak+l  pR+l okt k—1 ok be &~ k
+ + (e+b+)2 (gt o+ -

bk ck ak
It suffices to prove that

ak bk
bk—l +'Ck—1

&
+ 4 2a+b+e
a

which follows from Hélder inequality

ak bk Ck b k—1 > b k
s e s s btc+a)" ' >(a+b+0)".

Equality holds for @ = b = ¢. Notice that this problem is still true for every rational
number k (k > 1), and therefore it’s still true for every real number k (k > 1).

\Y
Example 2.2.4. Let a,b, ¢ be positive real numbers. Prove that
(@®=a®+ 3B - +3)(F - +3)>(a+b+0)>
(Titu Andreescu, USA MO 2002)

SoLUTION. According to Holder inequality, we conclude that

[[e®=a?+3) =[] (*+2+ (®*~1)(e® - 1)) > [[(c®+2)

cyc cyc
=@ +1+ DA+ + DA +1+) > (a+b+0)>
\Y%
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Example 2.2.5. Suppose a, b, ¢ are three positive real numbers verifying ab+bc+ca =
3. Prove that
A+aeH)Q 4+ )1 +%) > 8.

(Michael Rozenberg)
SoLUTION. The inequality is directly obtained from Holder inequality
(@202 +a? + b2 + 1)(B% + 2 + b2 + 1)(a® + a%? + 2 +1) > (1 + ab + be + ca)’.

\Y

-

Example 2.2.6. Let a,b, ¢ be positive real numbers which sum up to 1. Prove that

a b c
+ +
Ja+2b JSb+2¢ Ye+2a

(Pham Kim Hung)

SoLUTION. This inequality is directly obtained from by Hdlder inequality
a a a 4
e — —_— — +2b) | > =1

because

Za(a+2b) =(a+b+c)?=1.

cye

\Y

Example 2.2.7. Let a,b, ¢ be positive real numbers. Prove that

a®(b+¢) + b (c+ a) + *(a+b) > (ab+ be + ca) ¥/ (a + b) (b + ¢)(c + a).
(Pham Kim Hung)
SoLUTION. Notice that the following expressions are equal to each other
a?(b+c)+ b2 (c+a)+ P(a+b),
b%(c+a) + c*(a +b) + a%(b + ¢),
ab(a + b) + be(b+ ¢) + ca(c + a).
According to Holder inequality, we get that

3 3
(Za2(b+c)) > (Zab\a/(a+b)(b+c)(c+a))

cyce cyce

which is exactly the desired result. Equality holds for a = b = ¢.

\Y
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Example 2.2.8. Let a,b, ¢,d be positive real numbers such that abed = 1. Prove that

1 11 1\*
4“(a4+1)(b4+1)(c4+1)(d4+1)z(a+b+c+d+;+g+z+a) |
(Gabriel Dospinescu)

SovruTioN. By Hélder inequality, we get that

4
(a* + 1)1+ )1+ )1 +d) > (a+ bed)? = (a + é)

= V(@ + D)+ 1)(A + 1)(d +1) 2a+é

N N CEN CED D E Z”Z%-

cyc cyc

Equality holds fora =b=c=d = 1.
A%

Example 2.2.9. Let a,b, ¢ be positive real numbers. Prove that

(a® + ab + b%) (b2 + be + ¢*)(c? + ca +a®) > (ab + be + ca)?.
SoLuTION. Applying Holder inequality, we obtain
(a® + ab+ b2) (b + be + c2)(? + ca + a?)
= (ab+ a® +b%)(a® + ac+ ) (b% + ¢ + bc) > (ab+ ac+ be)?.

\Y

If an inequality can be solved by Holder inequality, it can be solved by AM-GM
inequality, too. Why? Because the proof of Holder inequality only uses AM-GM.

For instance, in example 2.2.1, we can use AM-GM directly in the following way
Let M =a+ b+ ¢. According to AM-GM, we have
a + a a(b? + 8ac) > 3a
Vb2 +8ac Vb2 +8ac (a+b+c)® Tatb+tc

Our work on the LHS is to build up two other similar inequalities then sum up all

of them.

But what is the difference between AM-GM and Cauchy-Schwarz and Hélder?
Although both Cauchy-Schwarz inequality and Hoélder inequality can be proved
by AM-GM, they have a great advantage in application. They make a long and com-
plicate solution through AM-GM, shorter and more intuitive. Let’s see the following

example to clarify this advantage.
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Example 2.2.10. Suppose that a,b, ¢ are positive real numbers satisfying the condi-
tion 3max(a?,b?,c?) < 2(a? + b2 + ). Prove that
b
2 + + 2 >
V2 1232 —a? V22 +2a2 -2 /2a% 4202 — ¢?
SoLuTIoN. By Hélder, we deduce that

(Z v2b? +(;c"’ —02) (Z V252 +C;cz _a2> (ZGW +2¢° —a?)) > (at+b+c).

cyc cyc

It remains to prove that
(a+b+¢)?>3 Za(2b2 + 2¢% — a?).
cyc

Rewrite this one in the following form

3 (abc—H(a—b+c)> +2 (Za3—3abc> >0,

cyc cyc
which is obvious (for a quick proof that the first term is bigger than 0, replace a—b+c =
z, etc). Equality holds fora =b=c.
\Y

How can this problem be solved by AM-GM? Of course, it is a bit more difficult.

Let’s see that

Z a + Z a + Z 3v3a(2b? + 2¢2 — a?)
V2b2 + 2¢2 — a? V2b% + 2¢? — a2 (a+b+¢)? -

cyc cyc cye

232—‘—/_3‘1——3\/5.

at+b+c

cyc
To use AM-GM now, we must be aware of multiplying 3v/3 to the fraction
a(2? 4 2¢% — a?)

(a+b+c)3
in order to have
a B a _ 3+/3a(2b% + 2¢% — a?)
V22 +2¢? —a? V2b2 + 2¢% - a? (a+b+c)?

in case ¢ = b = ¢. Why are Holder and Cauchy-Schwarz more advantageous?
Because, in stead of being conditioned by an "equal property” like AM-GM is,
Hélder and Cauchy-Schwarz are conditioned by ”proportional property”. This
feature makes Hoélder and Cauchy-Schwarz easier to use in a lot of situations.
Furthermore, HSlder is very effective in proving problems which involve roots (helps

us get rid of the square root easily, for example).
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Chebyshev Inequality

3.1 Chebyshev Inequality and Applications

Theorem 4 (Chebyshev inequality). Suppose (ay,aq,...,a,) and (b1, by, ...,by) are

two increasing sequences of real numbers, then
1
a1b1 +a2b2 + ...+ anbn Z ;(al + [¢2)) + ... +an)(b1 + bg + ...+ bn)
ProOF. By directly expanding, we have

n(arby +agby+ ... +anby) — (a1 +ao+ ...+ an) (b1 + b+ ... + b,)=

= 2”: (a: — a;)(bi — b;) 2 0.

ilj:I
Comment. By the same proof, we also conclude that if the sequence (a1, as,...,a,)

is increasing but the sequence (b1, bo, ..., b,) is decreasing, then
1
aiby +agby + ... + axb, < E(al +ag+...+a,)(by + b+ ... + by).

\Y

For symmetric problems, we can rearrange the order of variables so that the con-
dition of Chebyshev inequality is satisfied. Generally, solutions by Chebyshev in-

equality are more concise those that by other basic inequalities. Let’s consider the

following simple example

Example 3.1.1. Let ay,a,,...,a, be positive real numbers with sum n. Prove that

1
AP a4+ > el +af + ..+ al

53
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SOLUTION To solve this problem by AM-GM, we must go through two steps: first,

prove 1 E at+n > (n+1) E a?, and then prove E a? > n. To solve it by
i=1 =1
Cauchy-Schwarz, we must use an inductive approach eventually. However, this

problem follows from Chebyshev inequality immediately with the notice that the
sequences (a1, as,...,a,) and (a},ay,...,a) can be rearranged so that they are in-

creasing at once.

\%

Now we continue with some applications of Chebyshev inequality.
Example 3.1.2. Let a,b, ¢,d be positive real numbers such that a® +b% + 2 +d? = 4.
Prove the following inequality

a’ b2 c? d?
>
b+c+d+c+d+a+d+a+b+a+b+c_

RIS

SoLuTION. Notice that if (a,b,c,d) is arranged in an increasing order then
1 S 1 S 1 S 1 .
b+c+d " cH+d4a " dta+b T atbtec

Therefore, by Chebyshev inequality, we have

ez (5) (rve)

cyc

16(a® +b* + & + d?)

3(a+b+c+d)
>4\/zf(a2+b2+cg+d2)
— 3 .
That implies
2 b2 2 d2 4
<4 TR - > -
b+ec+d c+d+a d+a+b at+btecT 3
\%

Example 3.1.3. Suppose that the real numbers a,b,c > 1 satisfy the condition

RIS SN S
a?—1 b2 -1 E&-1

Prove that

1 n 1 1 <1
a+1 b+1+c+1_'

(Poru Loh, Crux)
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SoLUTION. Notice that if a > b > ¢ then we have

a—2>b—2>c—2 ; a+2<b+2<c+2.
a+1~b41 " c+1 a—1—"b—1"¢—-1

Chebyshev inequality affirms that

(255) < (252) (522),

cyc

By hypothesis, the left-hand expression is equal to 0, which means

a—2 b—-2 c¢-2
>
e e S i

which is equivalent to the desired result. Equality holds for a = b =c¢ = 2.

\Y

Example 3.1.4. Let a,b, c,d, e be non-negative real numbers such that

1+1+1+l+1
44+a 44b 44+c 44d 4+e

Prove that
a " b " c " d " e . )
44a? 440 44 4+4d? 4+~
1 —
SoLUTION. The hypothesis implies that ) Z = 0. We need to prove that
cyc
1 a l—a 1
> . > 0.
Z4+a _Z4+a2 © Z4+a 4+a? —
cyc cyc cyc

Assume that a > b> ¢ > d > e, then

1—a<1—b 1—c<1—d<1—e;

4d4+a —44b " 4+c—44+d " 4+e

1 1 1 1 1
< < < < ;
44a02 4402 T 44?2~ 4+4d? T 4+ €2

Applying Chebyshev inequality for the monotone sequences above, we get the desired
result. Equality holds fora=b=c=d =e=1.

\Y

Example 3.1.5. Suppose that a,b, c,d are four positive real numbers satisfying a +
b+c+d=4. Prove that

1 1 1 1
11+a2+11+b'~’+11+c2+11+d2

1
<z
=3
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(Pham Kim Hung)

SoLUTION. Rewrite the inequality in the following form

1 1
——1]2>0
Z(ll+a2 12>_

cyc

or equivalently
a+1
—a)- ——_>0.
2 (L=a) gy 20

cyc

Notice that if (a,b,¢,d) is arranged in an increasing order then

a+1 S b+1 S c+1 S d+1.
a2 +11 — 2411 T 2411 — d2 411

The desired results follows immediately from the Chebyshev inequality.
\Y

Example 3.1.6. Let a,b,c be three positive real numbers with sum 3. Prove that

1 1

1
a—2'+b—2+§2a2+b2+02.

(Vasile Cirtoaje, Romania TST 2006)

SoLuTION. Rewrite the inequality in the form

X:agbgZa"’b"’c"’X:a2 & Za2b2(1+c+cg+c3)(1—c)20.

cyc cyc cyc

Notice that if ab < 2 and a > b then
a?(1 4+ b+ b2+ b%) > b%(1 + a + a® + a?).

Indeed, this one is equivalent to (a+b+ab—a?b?)(a—b) > 0, which is obviously true
because ab < 2. From this property, we conclude that if all ab, be, ca are smaller than

2 then Chebyshev inequality yields

Y a?P(l+c+PE+)(l—c) > (Z a?*(1+c+c + c3)) (Z(l - c)) =0.

cyc sym sym

Otherwise, suppose ab > 2. Clearly, a + b > 21/2, so ¢ < 3 — 2v/2 and 02<%. That

means
_2+_l2+_2 >9>a*+b°+ .
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The proof is finished. Equality holds for a =b = ¢ = 1.
\Y%

In the following pages, we will discuss a special method of applying Chebyshev
that is very effective and widely used. This technique is generally called » Chebyshev

associate technique”.

3.2 The Chebyshev Associate Technique

Let’s analyze the following inequality
Example 3.2.1. Suppose a,b, ¢,d are positive real numbers such that
a+btctd=at+b 4t 4dh

Prove the inequality

20e+b+ctd) > Va2 3482 +34 /2 +34+/d2 43
(Pham Kim Hung)

SOLUTION. A cursory look at this inequality will leave you hesitating. The relationship
between the variables a,b, ¢, d appears to be obscure and very hard to transform;
moreover, the problem involves square roots. How can use handle this situation?
Surprisingly enough, a simple way of applying Chebyshev can draw the enigmatic

curtain. Let’s discover the method!

By hypothesis, we have

N O e A

cyc cyc cyc cyc

Rewrite the inequality to the following form
a®—1
2a—\/a2+3)>0® —2>0.
czy; ( - gy; 2¢ +vVa? +3
How to continue? The idea is to apply Chebyshev inequality for these sequences:

1 1 1

(a®—1,b62—1,c*—1,d%—1) ; (

However, it’s a futile idea because the first sequence is increasing but the second se-

quence is decreasing, and therefore the sign becomes reversed if we apply Chebyshev.

1
20 +vVa2 +3 26+ V02 +3 2¢c+VR+3 2d+Vd?2+3

).
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2

a*—1 . . .

Hope is not lost! Noticing that 3 ( - ) = 0, we will transform the inequality to
cyc

the form

Za2—1 a >0
a 2a + Va2 +3

cyc
S > b > ¢ > d. With the identit a4 1 We We see
uppose a 2 b > ¢ 2 d. Wi e 1dentity = , we

a

that

a?2—1b2-1 -1 d?—-1

a ' b ' ¢ ' d ’
and

a b c d
(2a+ VaZ £3 26+ Vb2 £ 3 2c+ Ve +3 2d+ Vd2 +3)

are two increasing sequences. So, according to Chebyshev inequality, we conclude

> (25 (i) 24 (555 (Sarvers) =

cyc cyc

This ends the proof. Equality holds fora =b=c=d =1.
\Y

What is the key feature of this simple solution? It is the step of dividing both
numerators and denominators of fractions by suitable coefficients in order to fit the
condition in Chebyshev inequality and bond it with the hypothesis. According to

this solution, we can build a general approach as follow

* Suppose that we need to prove the inequality (represented as a sum of fractions)
i G L Y
"N Y2 Un

in which zy,z9,...,2, are real numbers and Y1, Y2, Yn GTE positive real numbers.
Generally, every inequality can be transformed into this form if a certain fraction has
a negative denominator, we will multiply both its numerator and denominator by —1.
Then we will find a new sequence of positive real numbers (a1, as, ..., a,) such that the

sequence

(alxl,a2x2v",anxn)

is increasing but the sequence

(alyl7a2y2, sevy a'n.yn)
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is decreasing. After applying Chebyshev inequality

n

Z% > %(Zail‘i) > (a,—lyi) ’

i=1 cyc cyc
->

it will remain to prove that

2”: a;z; 2> 0.
i=1
\Y%

Why is this approach advantageous? Because it get rid of fractions in the inequal-
ity. Even a suitable choice that makes a;z1 + asxs + ... + anzn = 0 can help finish the
proof immediately. In fact, many problems can be solved in this simple way. Right

now, let’s go further with the following examples:

Example 3.2.2. Suppose a,b, ¢ are positive real numbers with sum 3. Prove that
1 1 1
<1
c2+a+b + a"’+b+c+ b +a+ec—

SOLUTION. The inequality is equivalent to

S (amersm3)20 © T(ats) 20

cyc
Z (Ll_?) > 0.
oo \e— 143
According to Chebyshev inequality and the hypothesis that a + b+ ¢ = 3, it suffices

to prove that ifa > b thenao —1+ E <b—-1+ % or (a— b)(ab—3) < 0. It's obviously
a

true because ab < %(a +5)? < -;3 < 3. Equality holds fora =b=c¢=1.

or

\Y%

Example 3.2.3. Let a,b, ¢ be positive real numbers and 0 < k < 2. Prove that

a? —be 4 b? —ca 4 c? —ab S
B4+c?2+ka?  A2+a24+kb?2  a24b2+ke? —

(Pham Kim Hung)

SoLUTION. Although this problem can be solved in the same way as example 2.1.1 is
solved, we can use Chebyshev inequality to give a simpler solution. Notice that if

a > b then for all positive real ¢, we have (a? — bc)(b+ ¢) > (b2 — ca)(c+ a), and

b+ +ka?)(b+c)— (¢ +a® + kb )(c+a) = (b—a) (Zdé’ —(k-1) Zbc) <0.

cyc cyc
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Having these results, we will rewrite the inequality into the following form

(a®? = bc)(b+ c)
Z (b+ ¢)(b% + ¢ + ka?) 20,

cyc
which is obvious by Chebyshev inequality because Y (a? — bc)(b + ¢) = 0.

cyc

\Y%

-

Example 3.2.4. Let a,b, ¢ be positive real numbers. Prove that

\Va? + 8be + \/b2+8ca+\/02+8ab§3(a+b+c).

SoLUTION. Rewrite the inequality in the following form

2 _
Z(3a—\/a"’+8bc) >0 < Zsaf\/;bih%czo

cyc cyc

or

(a® — be)(b + c)
Czyc (b+ ¢) (3a + Va2 + 8bc) =20

According to Chebyshev inequality, it remains to prove that : if @ > b then

(b+¢) (3a+ Va? +8bc) < (a+c) (3b+ Vb2 + 8ca)
& (b+c)Va?+ 8bc—(a+ c)Vb + 8ca < 3¢(b—a).

We make a transformation by conjugating:

a c— (a4 c ca_(b+c)2(a2+8bc)—(a+c)2(b2+8ac)
(b+ c)Va? +8bc— (a + ¢) Vb2 + 8ca = o1 VT TR (o r oV

_¢(b—a) [ 8a® + 8b2 4 8% + 15c(a + b) + 6ab |
B (b+c)Va? + 8bc+ (a + c)Vb2 + 8ca

It remains to prove that
8a2 + 852 + 8¢ + 15¢(a + b) + 6ab > 3 ((b+c) a2 + 8be+ (a + )V/B? + 8ca) ,
which follows immediately from AM-GM since
3
RHS < -
-2
3(a® + b% + ¢ + 5bc + 5ac) < LHS.

((b+ c)* + (a® + 8bc) + (a + €)? + (b* + 8ca))

Comment. Here is a similar example

% Let a,b, ¢ be positive real numbers. Prove that

a? — be b — ca ¢ —ab

+ +
V7a2 +2b% + 22 VT2 1+ 2¢2 +2a?  \/Tc? + 2a% + 262
\Y
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Example 8.2.5. Let a,b, c,d be positive real numbers such that a? + b2 + ¢ +d? = 4.
Prove that

(Pham Kim Hung)
SOLUTION. The inequality is equivalent to

1 1 -1
Z(S—a_Z) 0« Zg—aso

cyc cyc

(a—1)(a+1) a? -1
Z(5—a)(a+1) sbe §4a—a2+550'

cyc

Notice that _(a® — 1) = 0, so by Chebyshev inequality, it is enough to prove that
cyc

if @ > b then
da —a® +5>4b— b + 5.

This condition is reduced to a+b < 4, which is obvious because a2 +b? < 4. Equality
holds fora =b=c¢c=d = 1.
\Y

Example 3.2.6. Let ay,as9,...,an be positive real numbers satisfying

1 1 1
a1+a2+...+an-_—+—+ =
a a2 Qn
Prove that the following inequality holds
1 1 1 S 1

n? +a? -1 +n2+a§—1 +"'+n2+a;ﬁ—1 “ay+az+t..tan
(Pham Kim Hung)

SoLuTiON. WLOG, we may assume that a; > as > ... > a,. The hypothesis is

equivalent to:
1—a? 1—a? 1—a?
+ +...+

=0 (%)

ar as an

Denote S = Z a; and k = n? — 1. According to (*), the inequality can be rewritten
as =1
l—a; 1—ay l—an>n—S

k+a? k+"’+ +k+a,21" S

1—a? a; a;
i i _ 7 >
d ; a; [(1 +ai)(k+af-) (1+ai)S:| -
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For each i # j and 4,7 € {1,2,...,n}, we denote

a; ag a; _ a;
S = [(1 ta;)(k+a?) (1 +ai)5] @ +a)k+ad)  (1+ay)S
_ aj — a; aiaj(ai+aj+1)—k+—1_
T +a)(l+ay) | (af +HE)(aF+ k) S

If S;; <0foralll <i<j<n(j€N)then by Chebyshev inequality, we conclude

n

3 ;,.a? [(1 +a,~;(ik+a?) - f;,.)s]

=1

1|g~1=—af - ai a; _
ZE[Z a; ]Lgl:((l+ai)(k—l—a?) '_(l—l-ai)S)]_O'

i=1

Otherwise, suppose that there exist two indexes ¢ < j such that S;; > 0 or

a,'aj(ai+aj+1)—k 1

= <0
@ +k)(a@+k 55
This condition implies that
1  k—aai(a;+a;+1) 1 1 i 1
—< J J -
S~ (al+k)(aZ+k) T k+af + k + a2 <; k+a?
This ends the proof. The equality holds for a; = a3 = ... = a, = 1.

\%

Why does the Chebyshev associate technique stand out from other ways of ap-
plying Chebyshev? Perhaps its wide application is the reason. Do you think this
new and surprising? Surely not. In fact, this approach is natural. I believe that you
have already used it but haven’t given it a common name yet. From now, on instead
of thinking intuitively and accidentaly, you will use Chebyshev associate technique
intentionally. Sometimes the work of multiplying numerators and denominators by
suitable coefficients is quite conspicious, such as in the problems above, but sometimes
it’s not. Figuring out the good coefficients requires a lot of effort and therefore the
“intention” to find them becomes important. Let’s examine this matter through the

following instances

Example 3.2.7. Suppose that a,b, ¢ are positive real numbers with sum 3. Prove that

1 + 1 1
9—ab 9—-bc+9—ca
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SOLUTION. Let z = be,y = ca, 2 = ab. The inequality becomes

13 1 —
> 5255 ® 29—220'

cyc cyc

Suppose that a;,ay,a, are the coefficients we are looking for. We will rewrite the

inequality to
-S- a — ) ——— > .

The numbers (a;,ay,a,) must fulfill two conditions: first, among two sequences
(az(l — ),ay(1 — y),a.(1 — 2)) and (az(9 — z),ay(9 — y),a.(9 — z)), one is increas-

ing and another is decreasing (1); second, > a,(1 —z) > 0 (2).

cyc
Let’s do some tests. We first choose a; =1+ z,ay =1+ y,a, = 1 + 2. In this case,

condition (1) is satisfied but condition (2) is false because

Y a(1-z)=3-) z*<0

cyc

We then choose a; = 8+ z,a, =8+y,a, = 8+ 2. This time, condition (2) is satisfied
(you can check it easily) but condition (1) is not always true. Fortunately, everything
is fine if we choose a, = 6 +z,a, = 6 +y,a, = 6+ 2. In this case, it’s obvious that if
z>y>zthena,(1—-z) > a,(1—y) > a,(1—2) and a,(9—z) < ay(9—9y) < a.(9—2).

[t remains to prove that

2
Zaz(l—m)ZO S 5<Zab) + (Zab) < 18 + 6abc.

cyc cyc cyc
By AM-GM, we have
H(B —2a) = H(a +b—c) <abe
cyc cyc
This can be reduced to 9 + 3ubc > 4 Y ab. Replacing 3abc > 4 )" ab— 9 in the above

cyc cyc
inequality, it becomes

5 (Zab) + (Z@)Z <8 (Zab) & Y ab<3,

cye cyc cyc cyc

which is obvious because a + b + ¢ = 3. Equality holds fora =b=c=1.

\%
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Example 3.2.8. Let a,b, ¢ be positive real numbers such that a® 4-b* 4 c* = 3. Prove
that

(Moldova TST 2005)

SOLUTION. Let = = ab,y = ac and z = be. The inequality is equivalent to

l—2z 1—y 1-—2z
>0
4—:1:+4—y+4—z_

— 2 .2 .2
1—2= 1—y 1z>0

© A¥sz—22 A43y—¢ T d¥3.-2°

Notice that a® + b* + ¢* = 3 so z? + y? + 22 < 3 and therefore if z > y > z then
1—1251—y2§1—z2 ; 4-|—3:zr:—:zr:2Z4+3y—yg24-}-3z—z2 ;

thus by Chebyshev inequality, we obtain

1 — 22 1 * 1
244—39:——:7:2 Z§ (Z(l—xg)) <Z4+3x—12> 20

cye cyce cyc

because 3"z < 3 and ¥ z? < 3. Equality holds for a =b=c = 1.

cyc cyce

\%

Example 3.2.9. Let a,,as,...,a, be positive real numbers such that

1 1 1
a1+a2++an:a—+a—++z—
1 2 n

Prove the following inequality

1 1
et ——= <L
n—l+a%+n—1+a§+ +n—1+a,21"

(Pham Kim Hung)

SOLUTION. Rewrite the inequality to the following from
n

1 1
> (G -1) <0
£ n—14a¢ n
i=1 i

or equivalently
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Assume that ay; > ag > ... > a,,. According to the hypothesis, we have

n

a?—l B
Z ” =0.

i=1

Moreover, notice that

a; B a; _ (n—1—a4a;5)(a; — a;)
n—1+4+a? n—-1+a} (n—1+a?)(n—1+4a3)

So, in case a;a; <n —1 Vi # j, we can conclude that

n—1l+4+a; T n a; n—1+a?]

It suffices to consider the remaining case ajas > n—1. For n > 3, Cauchy-Schwarz

inequality shows that

a% + a% (a1+a2)2
n—1+a? n—1+a2 = 2(n—1)+a?+a?

> 1

n 2 n
a; 1
= —_—t2>1 = —F = <1
iz:;n—l+a§_ ;n—l+a§"

For n = 1 and n = 2, the inequality becomes an equality. For n > 3, the equality

holds if and only if a; = ag = ... =a, = 1.

\%






Chapter 4

Inequalities with Convex

Functions

The convex function is an important concept and plays an important role in many
fields of Mathematics. Although convex functions always pertain to advanced theo-
ries, this book will try to give you the most fundamental knowledge of this kind of
functions so that it can be easily understood by a high-school student and it can be
used in inequalities. This section includes two smaller parts: Jensen inequality and

inequalities with bounded variables.

4.1 Convex functions and Jensen inequality

Definition 1. Suppose that f is a one-variable function defined on [a,b] C R. f is
called a convez function on [a,b] if and only if for all z,y € [a,b] and for all0 <t <1,

we have

tf(x)+ (1 —t)f(y) > f(tz+ (1 - t)y).
Theorem 5. If f(z) is a real function defined on [a,b] C R and f"(z) > 0 Vz € [a, b]

then f(z) is a convex function on [a,b).

Proor. We will prove that for all z,y € [a,b] and for all 0 <t <1
tf(z)+ (1 —t)f(y) = f(tz + (1 - t)y).
Indeed, suppose that t and y are constant. Denote

9(@) =tf(z) + 1 —t)f(y) — f (tz+ (L —t)y).

67
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By differentiating,
g (z)=tf"(z) —tf'(tz+ (1 — )y).
Notice that f”(z) > 0 for all = € [a,b], thus f/(z) is an increasing function on [a, b].
This gives that ¢’(z) > 0if z > y and ¢’(z) < 0if z < y. That means g(z) > g(y) =0.
\Y

Theorem 6 (Jensen inequality). Suppose that f is a convez function on [a,b] C R.

For all zy,zs,...,z, € (a,b], we have

f(@) + F(@2) + .+ fl@n) 2 nf (‘”1 to +xn) |

n

\%

If you’ve never read any material regarding convex functions, or if you’ve never
seen the definition of a convex function, the following lemma seems to be very useful

and practical (although it can be obtained directly from Jensen inequality)

Lemma 1. Suppose that a real function f : [a,b] — R satisfies the condition

1) + 1) > 2f (“—jﬂ) Va,y € [a,b]

then for all =1, za, ..., z, € [a,b], the following inequality holds
' (:c1+:vz+...+:cn)

flz1) + f(z2) + ... + f(zn) 2 nf -

Proor. We use Cauchy induction to solve this lemma. By hypothesis, the inequality
holds for n = 2, therefore it holds for every number n that is a power of 2. It’s enough
to prove that if the inequality holds for n = k + *(k € N, k > 2) then it will hold for
n = k. Indeed, suppose that it’s true for n = k+ 1. Denote x = 2y + 22 + ... + 2 and

z
take xp41 = % By the inductive hypothesis, we have

)+ Sl ot flo) + 1 (5) 2 6+ 0 (F5E) =401 (5).

That finishes the proof.
\Y%

The result above can can directly infered from Jensen inequality because accord-

ing to the definition, every convex function f satisfies (¢ = 1/2)

)+ 1) 227 (1),
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Obviously, if we change the condition f(z) + f(y) > 2f (%&) Vz,y € [a,b] to

f(z)+ fy) <2f (3-;—?”) Vz,y € [a,b], then the sign of the inequality is reversed

fl@) + fz2) +...+ f(zn) < nf (:B1+:c2 +...+xn)'

n

Lemma 2. Suppose that the real function f : [a,b] — R* satisfies the condition

f(@) + f(y) > 2f(Vzv) Yz,y € [a, Y],

then for all x4, z9,...,z, € [a,b], the following inequality holds

F(22) + f(@2) + o+ F(ma) = nf (/7157 2m).

\%

The proof of this lemma is completely similar to that of lemma 1 and therefore it
won’t be shown here. Notice that this lemma is quite widely applied and it is related

to the AM-GM inequality of course.

Theorem 7 (Weighted Jensen inequality). Suppose that f(z) is a real function de-
fined on [a,b] C R and z1,2, ..., zn are real numbers on [a,b]. For all non-negative

real numbers a,, as, ...,a, which sum up to 1, the following inegquality holds
arf(z1) +aof(z2) + ... + anf(zn) > far121 + a2z + ... + anxy).
Jensen inequality is a particular case of this theorem for a; = ay = ... = a,, = 1/n.
Let’s consider a more elementary version of this theorem as follow

Lemma 3. Leta,;,as,...,a, be non-negative real numbers with sum 1 and x,, 22, ..., T,

be real numbers in [a,b]. Let f(z) be a real function defined on [a,b]. The inequality
a1 f(z1) +azf(z2) +... +anf(zn) = flarzr + asze + ... + anzy)

is true for every positive integer n and for every real numbers x;, a;, 1 =1,2,---,n

if and only if it’s true in the case n = 2.

\%

To prove lemma 3 as well as the weighted Jensen inequality, we use the same
method as in the proof of lemma. 1. The great advantage of lemma 1, 2 and 3 is that
is allows one to use the convex-function method even if one knows nothing about the

convexity of a function. Following is an obvious corollary
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Corollary 3.

a, The conclusion in lemma 1 is still true if we change the expression of the arithmetic
mean by any other average form of xzy,xs,...,xa; for example, geometric mean or

harmonic mean, etc.

b, If the sign of the inequality for two numbers is reversed, the sign of the inequality

for n numbers is reversed, too.

Jensen is a classical inequality. In the next chapters, we will continue discussing
this inequality in relationship with Karamata inequality, a stronger result. Now let’s

continue with some applications of Jensen inequality.

Example 4.1.1. Suppose that z1,%zs,...,x, are positive real numbers and

T1,%2,y ..., Ty 2> 1. Prove that

1 1 1
+ ot < - .
142, 1429 14+ 2z, 1+ Yzy25...2,

(IMO Shortlist)

SOLUTION. According to lema 2, it’s enough to prove that

1 1

< >1.
1+a2+1+b2 ~—1+4ab Va,b 21

We can reduce this inequality to (a — b)%(1 — ab) < 0, which is obvious.
\%

Example 4.1.2. Let a1,a, ...,a, be real numbers lying in (1/2,1). Prove that

a1as...Gy, > (1—=a1)(1 —a2)...(1 —ay,)
(ar+az+..+a)" ™ (n—a;—ap—..—ay)"

SOLUTION. The inequality is equivalent to

Z (lna,-—ln(l —a;) )2 nln (Zai) —nln (n—Za,) .

Notice that the function f(z) = Inz —In(1 — z), has the second derivative

ﬁg >0 (2 € (1/2,1)).

Therefore f is a convex function. By Jensen inequality, we have the desired result.

f”(:z:) — ;_;I- +

\%
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In comparison with other basic inequalities such as AM-GM Cauchy-Schwarz
or Chebyshev apparently, Jensen inequality is restricted to a separate world.
Jensen inequality is so rarely used because people always think that it is not strong
enough for difficult problems. However, there is an undiscoved field of inequalities
where Jensen inequality becomes very effective and always gives us unexpected so-

lutions.

Example 4.1.8. Let a, b, ¢ be positive real numbers. Prove that

a b c

+ + > 1.
Va2 + 8¢ Vb2 +8ac V2 +8ab T

(IMO 2001, A2)

SoLUTION. Although this problem has been solved using Holder, a proof by Jensen’s
inequality is very nice, too. WLOG, we may assume that a + b + ¢ = 1 normalize.

Because f(z) = —= is a convex function, we obtain from Jensen’s inequality that:

NG
a- f(a® + 8bc) +b- f(b% 4 8ca) +c- f(* + 8ab) > f(M)
in which M = 3" a(a? + 8bc) = 24abc + Y a3. It remains to prove that f(M) =1 or
cyc

cyc

M<1lor

3
24abc + Za?’ < (Za) < ch(a—b)2 > 0.
cyc

cyc

This last inequality is obvious. Equality holds fora = b = ¢.
\Y%

Example 4.1.4. Let a,b, c,d be positive numbers with sum 4. Prove that

e . b 4 € . d S 8
B2+b E+c d24+d a?+a” (atc)(b+d)

SoLUTION. Denote f(z) = —(—1+ﬁ, then f is a convex function if z > 0. According
z(z

to Jensen inequality, we have

a b c d ab+ be+cd + da)
z. Z. il —. > ,
SIS @+ @z g (S

which can be rewritten as

a 64
>
§b2+b = (ab+ bc+ cd + da)? + 4(ab + be + cd + da)
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It remains to prove that

64 8
>
(ab+ bc+ cd + da)? + 4(ab+ bc+ ed +da) — ab+ be+ cd + da

o ab+bcted+da<4 & (a—b+c—d)?>0.

Equality holds fora =b=c=d =1.
\%

Example 4.1.5. Suppose that a,b, ¢ are positive real numbers. Prove that

a+b+c<_3_
a+b Vb+c c+a — /2

SoLUTION. Notice that f(z) = /z is a concave function. According to Jensen in-

(Vasile Cirtoaje)

equality, we have

Z [a Z atc  [da(a+b+c)?

g a+b 2@+b+c) | (a+b)(a+c)?
a+c da(a + b+ c)? 2a(a+b+¢)

<

—\}Cyzc?(a+b+0) (a+b)(a+c)? \}Z(a+c) b+c)

It remains to prove that

a(a+b+c)
Z

9
<z,
(a+c)(b+c) — 4

After expanding, the inequality becomes

S(Zab) (Za) >9[Je+b) & S cda-—1b)?

cyc cyc cyc

Example 4.1.6. Let a,b, ¢ be non-negative real numbers. Prove that

a b c
+ >1
Vab2 + bec+ 4c¢? VA2 + ca + 4a? \,/lla?—i-ab+4b2 -

(Pham Kim Hung, Vo Quoc Ba Can)
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SOLUTION. We may assume that a + b+ ¢ = 1. Because f(z) = = is a convex

function, according to Jensen inequality, we have
a- f(4b? + be+4c) +b- f(4c® + ca + 4a?) + ¢- f(4a® + ab+ 4b%) > f(M),
where

M = a(4b® + be+ 4c?) + b(4c? + ca + 4a?) + c(4a® + ab+4b?) = 4 Z ab(a + b) + 3abe.

cyc

It suffices to prove that f(M) > 1 or M < 1. It’s certainly true because

3
= (Za) —4Zab(a+b) — 3abc = Zas —Zab(a+b) + 3abc

cyc cyc cyc cyc
:Habc—H(a+b——c) >0
cyc cyc

Equality holds for a = b= ¢ and a = 0,b = ¢ up to permutation.
\Y%

Example 4.1.7. Let a,b, ¢ be positive real numbers. Prove that

a b c
<1
Vaarabtc  Vabrdcta Victdats =

(Pham Kim Hung)

SoLuTION. Notice that f(z) = 4/z is a concave function, therefore by Jensen in-

equality we have

(da + 4c+ b) 8la(a + b+ ¢)?
Z 4a+4b+c Zg(a+b+c) (4a + 4b+ ¢)(4b + 4c + a)?
Z (da+4c+b) 8la(a + b+ c)?
9(a+b+c) (da+4b+c)(da+ 4c+b)?

Z 9a(a+b+c)
_\ p” (4a + 4b+ ¢)(4a + 4c + b)’

WLOG, we may assume that a + b+ ¢ = 1. It remains to prove

Z 9a(a + b+ ¢c)
< (da+4b+c)(da+4dc+b) ~
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or equivalently

Q(Za2+82ab) <JJ@“-3a) & 18) ab+27abc <7,

cyc cyc cyc cye
C . 1 1
which is certainly true because »_ ab < - and abe < —
cve 3 27

\%

Example 4.1.8. Let a,b, ¢ be positive real numbers such that a? + b2 + ¢ = 3. Prove

that
a b ¢
1/ - < /3.
a2+b2+1Jr b2+c2+14 02+a2+1_\/_

(Pham Kim Hung)

SoLUTION. Applying Jensen inequality for the concave function f(z) = 1/z, we have

a _Z a?+c?+1 9a(a? + b2 + ¢2)?
a?+b2+1  £=3(a+b2+c%) | (a2 +b2+1)(a® +c? +1)°

< Z a?+c2+1 9a(a? + b2 + ¢2)?
= ’\ o 3@?+ 02+ c?) (a?+b2+1)(a? + & +1)?

_ Z 3a(a? + b2 + 2)
\Cy( (@®+b2+1)(a2+c2+1)

It remains to prove that

a 1
Z(a2+b2+1)(a2+02+1) <3 @ 35 a(®? + & +1) <H(4—a
cyc

cyc

This inequality can be reduced to
12Za — BZa3 < 34 —a?b?? — 2Za4.
cyc cyc cyc

By AM-GM, we have a?b%c? < 1, so it’s sufficient to prove that

Z(2a — 3a3 +12a—-11)<04:2(a —1) ( _?_1)30.

cyc cyc

Because this last inequality is symmetric, we can assume that a > b > ¢. Denote

9 9 9
Se=2*-3a+2+—,5,=20"—3b+2 + —— - —
a a +a+1 b + +b+1’S =22 —-3c+2+ R
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If6<1thena+b<1++/2and (a+1)(b+1) <2(1+ v2). It implies

9

Sa—Sb:Z(a+b)—3—-m

<0.

Certainly S, — S, < 0, so we conclude that S, < Sp < S.. By Chebyshev inequality,

we obtain

Y (@ -1)S. < (Z(az - 1)) (Z sa) =0.

If > 1 then we also have S, — S, < 0 and Sy — S, < 0 (because ¢ < 1). It implies

wil=

> (@® —1)Sa = (a® —1)(Sa — S.) + (* — 1)(Sp — S.) < 0.
cyc
Equality holds fora =b =c¢=1.
%

In fact, the weighted Jensen inequality has, to some extent, much secrets. It’s still
rarely used nowadays but once used, it always shows a wonderful solution. Problems
and solutions above, hopefully, convey to you a certain way of using this special

approach; it should be contemplated more by yourself.

In the following pages, we will discuss a new way of applying convex functions to
inequalities. We will use convex functions to handle inequalities whose variables are

restricted in a fixed range [a, }].

4.2 Convex Functions and Inequalities with Vari-

ables Restricted to an Interval

In some inequalities, variables are restricted to a certain interval. For this kind of
problems, Jensen inequality appears to be especially strong and useful because it
helps determine if the variables are equal to the boundaries or not, for the minimum

of an expression to be obtained.

Example 4.2.1. Suppose that a,b,c are positive real numbers belonging to [1,2].

Prove that
ad + b + ¢ < Sabe.

(MYM 2001)
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SOLUTION. Let’s first give an elementary solution to this simple problem. Since
a,b,ce[1,2],ifa > b> cthen

a®+2<5a & (a—2)(a*+22a—1)<0 (1)
5a+b3<Bab+1 & (b-1)F?+b+1-52)<0 (2)
5ab+ ¢ < 5abc+1 < (c—1)(*+c+1—5ab) <0 (3)

The above estimations are correct because

P+b+1<a’+a+1<2a+a+1<5aq,
A4+c+l1<a’+a+1<5a<5ab

Summing up the results (1), (2) and (3), we get the result. Equality holdsifa = 2,b =
¢ =1 and permutations.

\%

Example 4.2.2. Suppose that a,b,c are positive real numbers belonging to [1,2].
Prove that

1 1 1
b -+ -4+-}<10.
(wk+@(a+b+c)_
(Olympiad 30-4, Vietnam)

SOLUTION. The inequality can be rewritten as

b b
24242424242«
b ¢ a a b ¢

WLOG, we may assume that a > b > ¢, then

a a b
-+1> -4 -
(a—b)la—c)20 = ¢ ¢ g £
_+12—+_,
a b a
which implies that
a c b a ¢
-+ -+ -F+-<—-—4+-42
b b a c
We conclude
b b — -
¢%+—+3+—+5+352+2@+£):7—w 20(2a-0) _,
c a a b ¢ c a ac

because 2¢ > a > ¢. Equality holds for (a,b,c) = (2,2,1) or (2,1,1) or permutations.

Comment. Here is the general problem. Its solution is completely similar to that of

" the previous problem.
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* Suppose that p < q are positive constants and ay,as, ...,an € [p,q|. Prove that

kn (p - Q)Q
dpq

7

11 1 ,
(ar+ag+..+a)| —+—+...+— | <n°+
ap ao Qn

where k, =n?% if n is even and n? —1 if n is odd.
\Y

The key feature of the previous solution is the intermediate estimation (estimate
that if a > b > c then (b—a)(b—c) < 0). Because they are so elementary and simple, a
high-school student can comprehend them easily. But what happens to the following

inequality? Can the previous method be used? Let’s see.

Example 4.2.8. Let x,x9,...,29005 be real numbers belonging to [—1,1]. Find the

minimum value for the following expression
P = 2129 + zow3 + ... + T2004%2005 + 200571

SOLUTION. Because this inequality is cyclic, not symmetric, we can not order variables

as. If we rely on the relation (z; — 1)(z; + 1) £ 0, we won’t succeed either.

By intuition, we feel that the expression will attain its maximum if in the sequence

(z1, 2, ..., 2005), 1 and —1 alternate. In this case
P=1-(=1)4(=1)-1+4...+(=1)-1+1-1=—2003.

An accurate proof of this conjecture is not so obvious. Although the following solution
is simple, it’s really hard if you don’t have some knowledge of convex functions is never

generated in your mind.

First, we notice that if = € [p, g| then each linear function f(z) = az + b or quadratic

function f(z) = 22 + az + b has the following important property

max_f(z) = max{f(p), f(q)}.

z€[p,q]

A linear function satisfies another condition

min f(z) = min{f(p), f(q)}.

z€(p,q]

Notice that P = P(z;) is a linear function of z1, therefore, according to properties of
linear functions, P can attain the minimum if only if z; € {—1,1}. Similarly, for the

other variables, we deduce that P attains the minimum if and only if 2, € {—1,1} for
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each k =1,2,...,2005. In this case, we will prove that P > —2003. Indeed, there must
be at least one index k (k € N,1 < k < 2005) for which zxzg41 > 0. That implies

zkprry1 = 1 and therefore > zz;1q1 > —2008.
k=1

Comment. By a similar approach, we can solve a lot of inequalities of this kind such

as

* Let =1, x9, ..., z, be real numbers belonging to [—1,1]. Find the minimum value
of
P =x2129023 + 202324 + ... + T_1ZnT1 + Toax120.
% Let z1,x9, ..., T, be real numbers belonging to [0,1]. Prove that

P=z;(1 —z)+zo(l —z3) + ...+ z,(1 —z1) < [-g] .

\%

For what kind of functions does this approach hold? Of course, linear function is
an example, but there are not all. The following lemma helps, determine a large class

of such functions.

Lemma 4. Suppose that F(z1,x2,...,25) is a redl function defined on [a,b] X [a,b] x
o+ X [a,b] CR™ (a < b) such that for dl k € {1,2,...,n}, if we fix n — 1 variables
z;(§ # k) then F(z1,z9,....,2,) = f(zk) is a convez function of xp. F attains its

minimum at the point (ay, o, ..., o) if and only if a; € {a,b} Vi € {1,2,...,n}.

SoLUTION. In fact, we only need to prove that if f(z) is a real convex function defined
on [a,b] then for all z € [a, b], we have

f(z) < max{f(a), f(b)}.

Indeed, since {ta + (1 —t)b|t € [0,1]} = [a, b], for all = € [a,b], there exists a number
t € [0,1] such that = = ta + (1 —t)b. According to the definition of a convex function,
we deduce that

f(z) < tf(a) + (1 —1)f(b) <max{f(a), f(b)}.

\Y%

With this lemma, ini problems like example 4.2.3., we only need to check the
convexity/concavity of a multi-variable function as a one-variable function of zy,

(k=1,2,...,n). Here is an example.
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Example 4.2.4. Given positive real numbers x,x, ..., T, € [a,b], find the mazimum

value of
(1 —z2)? + (2 —z3)2 + -+ (21— 20)2 4 (o — 23)2 + -+ + (o1 — 20) %
(Mathematics and Youth Magazine)

SoLuTION. Denote the above expression by F. Notice that F', represented as a func-

tion of z; (we have already fixed other variables), is equal to

f(z) = (n—1)z? -2 (le) x+c¢
i=2

in which ¢ is a constant. Clearlyy f is a convex function (f”(z) = 2(n — 1) > 0).
According to the above lemma, we conclude that F' attains the maximum value if and
only if z; € {a,b} for all i € {1,2,...,n}. Suppose that k numbers z; are equal to a

and (n — k) numbers z; are equal to b. In this case, we have

n n 2
F=n (Z mf) — (Z mi) = nka? +n(n—k)b? — (ka+(n—k)b)? = k(n—k)(a—b)2.
i=1 i=1
We conclude that
m?(a — b)? if n = 2m, m €N,
max(F) =
m(m+1)(a=b)2?ifn=2m+1, meN.
\%

Example 4.2.5. Let n € N. Find the minimum value of the following expression
fz)=1+z|+24+2z|+..+|n+z, (z€R)

SoLUTION. Denote I; = [—1,4c0), Iny) = (—o0,—n] and Iy = [—k, —k + 1] for each
n n -1
ke{2,3,...,n}. Ifxzelthen f(z)=Y (1+z) 2> (i—1) = -n(Lz—) = f(-1). If
i=1 =1
n n -1
z € I, then f(z) =Y. (-1—z) > Y (—i+n) = n(n_z)_ = f(—n).
=1 i=1

Suppose z € I, with 1 < k <n 41, then

k-1 n
fl)==> (i+z)+) (i+2)
i=1 i=k

1s a linear function of z, therefore

min £(z) = min{f(~k), f(—k+1)}.

zel
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This result, combined with the previous results, implies that
min f(z) = min{ f(-1), f(=2), ..., f(—n)}.
zER
After a simple calculation, we have
1
f(Ry =424+ (k=) + (L +2+ .+ (n=k) = 5 (k" + (n —k)* +n),

which implies that

k2 4+ (n—k)?+n m(m + 1) if n = 2m (m € N).
n —
1sksn 2 (m+1)2ifn=2m+1 (meN).

\%

Why does this approach make a great advantage? It helps us find the solutions
immediately. It takes no time to try intermediate estimations, because everything we

need to do is check the boundary values.

Sometimes, variables may be restricted not only in a certain interval but also by

a mutual relationship. In this case, the following result is significant

Lemma 5. Suppose that f(z) is a real convex function defined on [a,b] € R and
T1,T2, .y Ty, € [a,b] such that z1 + z9 + ... + T, = s = constant (na < s < nb).

Consider the following expression

F = f(z1) + f(z2) + ... + f(zn).

F attains the maximum value if and only if at least n — 1 elements of the sequence

(z1,22,..,2,) are equal to a or b.

SoLuTION. Notice that this lemma can be obtained directly from its case n = 2. In
fact, it’s sufficient to prove that: if z,y € [a,b] and 2¢ < z +y = s < 2b then

fl@)+ f(s—a)ifs<a+b

f(ﬂ?)+f(y)S{
f®)+ f(s=b)ifs>a+b.

Indeed, suppose that s < a + b, then s — a < b. Because = € [a, s — a], there exists a
number ¢ € [0,1] for which z = ta + (1 — t)(s —a). That gives y = (1 — t)a + t(s —a).
By the definition of a convex function, we have f(z) < tf(a)+ (1 —t)f(s — a) and
f(y) < (1 =1t)f(a) +tf(s —a). Adding up these results, we conclude

f(z)+ f(v) < f(a)+ f(s—a).
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In the case s > a + b, the lemma is proved similarly.
v

Now look at some familiar problems that turn out to be simple by this theorem.

Example 4.2.6. Let a1, ay, ..., a, be positive real numbers belonging to [0, 2] such that

ay +az + ... + an = n. Find the mazimum value of
S=a?+ai+..+al.

SoLuTiON. Applying the above lemma to the convex function f(x) = x2, we get that
S attains the maximum if and only if £ numbers are equal to 2 and n —k —1 numbers
are equal to 0. In this case, we have S = 4k + (n — 2k)2. Because a1, as, ...,an € [0,2],

we must have 0 < n — 2k < 2.

If n = 2m (m € N) then n — 2k € {0,2}. That implies max .S = 4m = 2n.
Ifn=2m+1 (meN) then n — 2k = 1. That implies maxS=4m +1=2n+1.

v
Example 4.2.7. Suppose that a,b,c € [0,2] and a +b+ ¢ = 5. Prove that
a® + b2+ <.

'SOLUTION. Suppose that a < b < ¢. According to lemma. 5, we deduce that a2 +b%+ 2
attains the maximum if and only if @ = 0 or b = ¢ = 2. The first case a = 0 is rejected
because so, 4 > b+ ¢ = 5 is a contradiction. In the second case, we have a = 1 and

therefore max{a® + b2 + ?} =12 +22 + 22 = 9.
v

Example 4.2.8. Let a;,as,...,as007 be real numbers in [—1,1] such that a; + as +

.. +ag007 = 0. Prove that
a? + a2+ ... + adgg; < 2006.

SoLuTION. Applying lemma 5, we deduce that the expression a? + a2 + ... + agq;
attains the maximum if and only if k¥ numbers equal 1 and n — k — 1 numbers equal

—1. k must be 1003 and the last number must be 0, so we deduce that
a2 +a2+ ..+ a2y, < 2006.

\%
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Example 4.2.9. Let 1,23, ...,z be real numbers in the interval [—1,1] such that

23+ 23 + ... + 23 = 0. Find the mazimum volue of z1 + 3 + ... + Tp.
(Tran Nam Dung)

SoLuTION. We denote a; = .1:5‘3 for all i € {1,2,...,n}, then ay + ag + ... + ¢, = 0.
Notice that the function f(z) = &= is concave if > 0 and convex if z < 0. It’s easy

to get (as in lemma 5)

f(=1)+ flz+y+1) ifz,y €[-1,0].

T y) < T
=)+ fly) < 2f( ;y) if z,y € 10,1].

(1)

Now suppose that there are two numbers z,y of the z;’s such that x < 0 <y then

-1) + 1), ifz 4y <0.
@)+ ) < f(-1) .f(:c+y+.) ifz+y @)
fO)+ f(z+y), ifz+y>0.

According to (1), we deduce that if a1,a9,...,ax are all non-positive terms of the

sequence (a3, as,...,a,), then

k n
> fla) < (k=1)f(1)+f (Zai tk— 1) :

which implies that we can change k — 1 non-positive numbers to —1 to make the sum
k

>~ f(a;) bigger. Moreover, if agt1,0k42, ..., an are non-negative then

i=1

n 1 n
PR ICHRS ROV B DY
j=k+1 j=k+1
That means we can replace all non-negative numbers with their arithmetic mean

to make . i f(a;) bigger. However, we can make only k — 1 non-positive numbers
equal to z—=f,+ tlhere is always one non-positive number left. Suppose that this number
is ax. Because i a; = 0, there is one non-negative number, say a,,. According to (2),
because a; < 6:é an, we can replace (ag,ar) with (—1,ax +a, +1) if ax +a, <0
(ax+a,+1 > 0) and with (0,ax +a,) if ax +-a, > 0. After this step, the new sequence

has all k£ non-negative elements equal to —1. Therefore

> (e < o) = kA1) + (n = B)F (27 ) = VR = R~k

i=1
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Notice that the derivative ¢'(k) has only one root k = g—, so we conclude that the

n n
maximum of the expression ) f(&;) or > x; is
i=1 i=1

w516 B - B GT-)-6- BB







Chapter 5

Abel Formula and

Rearrangement Inequality

5.1 Abel formula

In the following pages, we will discuss an identity that closely relates to many problems
in mathematics contests. In the field of inequality this identity has its best effect. It’s
called Abel formula.

Theorem 8 (Abel formula). Suppose that (%1, 22, ...,2n) and (y1,¥2,...,¥n) are two

sequences of real numbers. Denote c, = y1 +y2 +... + vk (k=1,2,...,n), then
Z1y1 + 2oy2 + .. + Tnyn = (T1 —B)er + (T2 — z3)e2 + ... + (Tn-1 — Tn)Cn—1 + Tntn.
PROOF. We certainly have
(1 —xg)er + (w2 — z3)es + oo + (Tno1 — Tn) a1 + Tncs
=171 +(ca —c1)xa + ... +(Cn — Ca-1)Tn = T1y1 + Toy2 + ... + Tn¥n.
A%

From this theorem, the following result can be obtained directly

Example 5.1.1 (Abel inequality). Let z1,Z2,...,2n and y1 > ya > ... 2> yn > 0 be
k
real numbers. For eack k € {1,2,...,n}, we denote Sy = Y ;. Suppose that M =

i=1

max{S1, Sg, ..., Sn} and m = min{Sy, Sy, ..., Sn}, then

my1 < x1y1 +xoy2 + ... + Tnyn < Muyr.

85
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SOLUTION. Since both two parts of the inequality can be proved similarly, we only

need to show the solution to the left inequality. Let y,,1 = 0. By Abel formula

n n n
Zwiyi = Z(yi — ¥i+1)Si 2 ZTn(yi — Yi41) = MY
=1 i=1 i=1

\Y%

Inequalities solved by Abel formula often appear in sophisticated conditions that

makes them difficult to solve by other methods. Here are some examples.

Example 5.1.2. Let a1,as,..,a, and by > by > ... > b, > 0 be positive real numbers

such that ayas...ax > bybs...by Vk € {1,2, ...,n}. Prove the following inequality
ayt+ag+...+a, Zbl +b2 ++bn

SoLUTION. By Abel formula, we deduce that
Za, Zb = Zb (— —1)
= (b — by) (E -1

T (i

because AM-GM inequality yields that for all k € {1,2,...,n}

+(b2——b3) (Zl +E~2> + ..

—n+1) + by, (Z%i—n) >0,

=1

G'ID N—’

aj1ay...ak
it} 4% [ 0102:0k
b1 S b ot b = "\ 1ba. bx

\Y%

> k.

Example 5.1.8. Let zy, z9,..,x, be positive real numbers such that
1 +zo+...+azx > VEkVk e {1,2,..,n}.

Prove the following inequality

1 1 1 1
m]+m2+ -i—:z: Z(1+§+§+...+;).
(USA MO 1994)
SoLuTION. WLOG, assume that z; > 9 > ... > z,,. For each k € {1,2,...,n}, let

1
by = —.
k JE

We will first prove that

n n

i=1 =1
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and then, 22 z;b; > z b2

By Abel formula we have

ZZE-;(ZT,', - b.‘) - (1131 - 1132)(21131 - bl) + (1132 - 1133)(21131 + 21132 —_ bl - bg) 4+ ...
i=1

n-1 n—1 n n
+ (ZEn_]_ —'CCn) (2 Zmi — Zb,) +£En (221131 - Zbi)
i=1 i=1 i=1 i=1

k k
Because x;, > 2514 Vk € {1,2,...,n}, so we only need to prove that 25" z; > 3>
By hypothesis, it’s enough to prove that - B

o
27 2Vk.

However, this last inequality is clearly true because

k k k
Z%sz\ﬂ—f—— mzzz(ﬂ—m):zﬁ.

\Y
Also by Abe formula,

n n—1 n—1
> b2 — by) = (by — ba) (21 — by) + ... + (bp_y — by) (2 DY b.,;) +
i=1 =1 i=1

+bn (Qi:c, - Xn:ZEi —Xn:b,) .
i=1 i=1 i=1
by > bres (V) k€ {1,2,.

,-+-,n}, so all terms are positive.

Example 5.1.4. Let ay,ay,...,a, and by, by, ..., b, be real numbers such that

al>a1+a22. Za1+a2+...+an1
- 2 n

blzbl-;-bzz Zb1+b2+~--+bn.
n

Prove the following inequality

arby + agby + ... +anby —(a1+a2+ A an)(by +ba + ... +by).

(Improved Chebyshev inequality)
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SoLuTION. For each k € {1,2, ...,n}, we denote Sy = a3 +ag +... +ay and b,y =0,
By Abel formula, we have

Zazb _Zb —bip1)Si =Y i(bi — biy1) (S").

i=1 i=1

According to Abel formula again, we have

Zazb = (sl S2> (b — bo) + (%-%) (by + by — 2b3) + ...

N (:ﬂ_—ll - %) (Tgbi—(n—l)bn) +% (X:;a) (gb) .

52
2

10!

n

> ...> —, so it’s enough to prove that
n

S1
By hypothesis, we have T >

k
> b = kbgyr VE € {1,2,...,n —1}.

i=1
This one comes directly from the hypothesis

k+1

Zbi.
z-—l

??‘I'—‘

<

Example 5.1.5. Let x1,x9,..., 2, be real numbe.rs such that z1 2> z9 > ... 2z >

Zny1 = 0. Prove the following inequality

Ve, +zo+... 2z, SZ\/Z_(\/:U_.L—\/:T_H)
=1

(Romania MO and Singapore MO)

SoLuTION. Dernote ¢; = vi — i — 1 and a; = v/Zi- The inequality becomes
(a1c1 +ageg + ... +ancn)2 > a"l) +a% + ...+ afl.

14
Suppose that by,bs,...,b, are positive real numbers satisfying > b? = 1 and
i=1

n n n 2
(Z a?) (Z bf) = (Z aibi> (the sequences (a1,as, ...,a,) and (b1, by, ..., b,) are
i=1 i=1

i=1
proportional). We need to prove that

aicy +agco + ...+ ancy > arby + agbs + ... +anb,.
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By Abel formula, the above inequality can be changed into

n

Y ai(ei—b) 20 & (a1 —a3)(er — by) + (az —as)(cr + c2 — by — by) +

i=1
n—1 n—1 n n
+ (an—1 — an) (Zai - Zbi) +an (Zai _Zbi) > 0.

i=1 i=1 i=1 i=1

which is true because for all k =1,2,...,n

Yo 3 oh=VE-3 bz VE-

i=1

\%

Example 5.1.6. Let aq,aq,...,a, and by < by < ... < b, be real numbers such that
a?ta2+..+al <b?+b3+..+bf Vke{1,2,...,n}. Prove that

a1+a2+...+an§b1+b2+...+bn.

SOLUTION. We prove this problem by induction. Case n = 1 is obvious. Suppose
that the problem has been proved for n numbers already. We will prove it for n + 1

numbers. Indeed, by Cauchy-Schwarz, we deduce that

@ +a2+..+a2, )(bF+b2+...+b2,)) > (a1by +agby + ... + Gny1bnyr)?

n41 n+1 n+1 n+l
By hypothesis that 5 a? E b2, so L b2 > 3" a;b;. According to Abel formula,
1—1 -_- ‘t-—- 1=
n+1
O<Zb =(by — b2)(by — a1) + (by — b3)(by + by —ay —az) + ...

+ (bn — bny1) (Zb —Zaz) +bpy1 (nfb —Tijla,).

In the sum above, every term except the last one is non-positive (because for all

k k

ke {1,2,...,n} we have by<bxy; and )_ b; > 3" a;, by inductive hypothesis). So we
i=1 i=1

must. have that

n+1 n+1 n+1 n41
brt1 (Zbi—-Za,) >0 o Zb > Za,
i=1 i=1 i

Comment. The following stronger result, proposed by Le Huu Dien Khue, can be

proved directly (without induction) by Abel formula
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* Let ay,aq,...,a, and by < by < ... < b, be real numbers such that a? +a3+...+
a? < b2+ b2+ ...+ b2 Vk €{1,2,...,n}. Prove that

2 2 a?
b1+b2+...+bnza—‘+a~3+...++’l.
by b by,

\Y%

Example 5.1.7. Lel -1 <z <29 < ... <20y <1 andy; < yg < ... < yn be red

numbers such that ) + zo + ... + zn = 13 + 233 + ... + 213, Prove that
x}syl + :c%syg +...+ :z::fyn < 1Y) +2oy2 + ...+ TpYa
(Russia MO 2000)

SoLUTION. According to Abel formula, we note that

n
Y w1 — @) = (1 — 1) (21 — =) + (2 —ya) (@1 + 28— — e} +

=1
n—1 n—1 n n
+ (yn-——l - yn) (Z m}B - Z ZB,‘_) + Yn (Z -73}3 - Zmz) .
i=1 i==1 =1

=1

Because yx < yk41 Yk € {1,2,...,n — 1}, we only need to prove that

Applying Abel formula again, we have

k
Z:ri (2 —1) = (21— =) (21> — 1) + (2 — z3) (21 + 25 —2) + ...
i=1
k-1 k
o= (S k) o (oot
i=1 =1

J
Notice that z; € [-1,1], Vi € {1,2,...,n} so > =z!? < jVj e {1,2,..,k}. Moreover,
i=1
because 7; < zg < ... < zg, every term in the above sum except the last term is
non-negative. If zx < 0, we are done. Otherwise, suppose that z; > 0, then z; >

0 Vi > k + 1. This implies (by hypothesis)

n n k k
DD DAY SRS g
=1

i=k+1 i=k+1 i=1

\%
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Problems solved by Abel formula as above are a bit unusual. The strength of
Abel formula is shown in inequalities with sequences, where other methods fail. Abel
formula is also significant in the proof of a very important inequality that will be

discussed now, rearrangement inequality.

-

5.2 Rearrangement Inequality

Theorem 9 (Rearrangement Inequality). Let (a1,as,...,a,) and (b1, ba, ..., b,) be two
increasing sequences of real numbers. Suppose that (iy,12,...,1,) 18 an arbitrary per-

mutation of (1,2,...,n), then
a by +asby + ... +ayb, > albi1 + agbiz +..+ anbin

If the sequence (ay, ag, ..., a,) is increasing but the sequence (b1, ba, ..., b,,) is decreasing

then the sign of the above inequality is reversed.

ProoOF. Notice that ay < a3 < ... <a, and by < by < ... < b,, so according to Abel

formula,

Zakbk - Zakbik = Zak(bk - bik)
k=1 k=1 k=1

= (a1 — ag)(by — bi,) + (ag — ap) (b1 + by — by, — by,) + ...

n—1 n—1 n n
(an—l - an) (Z bk - bik) + a, (Z bk - Zbik) 2 Oa
k=1 k=1

k=1 k=1

k k
because for all k € {1,2,...,n}, we have }_ b; < ) b;,.
The theorem is proved similarly in the case with (aj,as,...,a,) increasing but
(b1,ba, ..., by) is decreasing.

\Y

In practice, Rearrangement inequality is strong. It can help prove AM-GM

inequality in a single way.

Example 5.2.1. Let a;,asy, ..,a, be positive real numbers. Prove that

ay+ag+ ... +a, > nYaias...an.

. . Z1
SoLuTioN. WLOG, assume that ajas...a, = 1 (normalization). Let a; = ;—,ag =
2
Z Tp-—1 X
—3, Q1 = —== . %1,Z9,.... Ty > 0, then a, = —. The problem becomes
I3 Tn |
1 X9 Tpo1 T
—+=+..+2 “
9 T3 Tn T
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Notice that if the sequence (z1,z2,...,2,) is increasing then the sequence

1 1 1
(—, — e —) is decreasing. By Rearrangement inequality, we conclude that

Z Z z )
Tit1

i=1 i=1

For cyclic inequalities, Rearrangement inequality seems to be very effective.
Sometimes it’s not easy to realize the use of Rearrangement inequality because it
is hidden after the normal order of variables is changed into chaos. Being aware of
Rearrangement inequality in a problem requires a bit more intuitive ability then

for other inequalities. The following problems will, hopefully, enhance that ability.
Example 5.2.2. Suppose that a,b, ¢ are the side-lengths of a triangle. Prove that
a?b(a —b) + b%c(b—¢) + Fa(c—a) > 0.
(IMO 1984, A3)

SOLUTION. Because a, b, ¢ are the side-lengths of a triangle, a > b implies a2 + bc >
b2 + ca. By this property, we deduce that if @ > b > ¢ then a? +be > b2 +ca > 2 +ab;

1 1
also, " < b < =. According to Rearrangement inequality, we conclude that
c

P P S SR B )

cyc cyc cyc cyc cyc cyc

which is equivalent to the desired result. Equality holds for a = b = c.
\Y

Example 5.2.3. Let a,b, ¢ be positive real numbers. Prove that
2 2 2
a*+bc b*+ca  c¢®+ab
> A
b+c c+a a+b 2atbte
SOLUTION. Applying Rearrangement inequality for the sequences (a2,b2,02) and

( 1

b+c’'ct+a'a+b

) (if @ > b > c, then these are both increasing), we get that

which implies that
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Example 5.2.4. Let a,b, ¢ be positive real numbers. Prove that

at+b a+4c b+c +b+
at+c b+ec a+b"b

(Mathlinks Contest)

SOLUTION. The inequality can be rewritten to

Z(%_bic) >Za+c Zb(b+c) "%aic'

cyc

Consider the expressions P = Y ——— and Q = Y, ———. By Rearrangement

cyc b(b+ ) cyc (b+ )
inequality, we deduce that

ac 1
@= Z b+c :}L‘;T'b+czp'

Moreover, by Cauchy-Schwarz inequality, we can write

oz (5%)

cyc

and therefore (because P > Q) we have P > Y —i—. The proof is finished and the
cyc c
equality occurs if and only if a = b = ¢.

Comment. This inequality can be proved by another nice approach. Indeed, notice
that for all positive real numbers a, b, ¢ > 0, we have
a b ¢ _(a—b)2+(a—c)(b—c)

pteta 3w ac

WLOG, assume that ¢ = min(a, b, c). Rewrite the inequality to

-

Lo T T
[ab (a+c)(b+c)]( b)+[ac ero@ip) @920

which is obvious because ¢ = min(a, b, ¢).
\%

Example 5.2.5. Let a,b, ¢ be positive real numbers. Prove that

a+b+b—|—c c-l—a<(a—|—b-l-c)2
b+c c¢c+a a+b " ab+bc+eca
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SoLUTION. The inequality is equivalent to

(a+b)(a(b+c)+be
Z b+c

) <(a+b+c)?

cyc

< Za(a+b)+zbc%:_?bl <(a+b+c)?

cyc cyc
o S () (@rb)<abrbeten
o b+ec -
This last inequality is true by Rearrangement inequality because if z > y > 2 then

Ty zz_ Yz
zt+ty " zt+zT y+=z

rty2ztey+z

Equality holds for a = b = c.
\%

Example 5.2.6. Let a,b, ¢,d be non-negative real numbers such that a+b4c-+d = 4.
Prove that
a?be + b2ed + Ada + d%ab < 4.

(Song Yoon Kim)

SOLUTION. Suppose that (z,y, z,t) is a permutation of (a,b, ¢,d) such that z > y >
z 2> t, then zyz > zyt > z2t > yzt. By Rearrangement inequality, we deduce that

T zyz +y-xyt+z-z2t +t-yzt > a’be + b2ed + Ada + d2ab.
According to AM-GM inequality, we also have
zoa2yz+y-zyt +z-x2t +t-yat = (xy + 2t)(zz + yt)

1
< Z(acy+xz +yt+ 2t)? < 4,

1
because zy +yz+ 2t +tz = (2 +2)(y+t) < ~(x+y+ 2+ t)2 = 4. Equality holds for

a=b=c=1lora=2,b=c=1,c =0 up to permutation.
\Y

Example 5.2.7. Let a,b,c,d be positive real numbers. Prove that

>

( a 2+ b 2+ ¢ 2 d 2>4
a+b+ec b+c+d \c+d+a + d+a+b) 9
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(Pham Kim Hung)

SoLuTioN. WLOG, we may assume that « + b+ ¢+ d = 1. Suppose that (z,y, z,1) is
a permutation of (a,b, ¢,d) such that £ > y > z > ¢, then
1 1 . .
< < 1 1
z+y+z xzt+y+l T x+2
By Rearrangement inequality, we deduce that

a 2 22 2 2 2
-~ Y z t
Z( ) 2 2+ 2+ 2+ 2
c~\atbte (x+y+2) (z+y+1t) (z+z+1) (y+2z+1)
.’E2 y2 22 t2
BT ER = E CRrn I (g
2.2 t?

Denote m =z + ¢, n =zt and s = —. Certainly, we only need to

— +
(1-1)?  (l—x)
consider the case s < 3" If m = 1 then y = z = 0 and the result is obvious because

:Z??‘ y'Z Z2 t2 1232 t2
=02 " U2 "TU=g2 " (=2 2 &

2.

. 1 .
Otherwise, we have m < 1 and s < —. After a short computation, we have

2
n*(2 —s) - 2n(m— 1)(2m —1—3s) 4+ (m — 1)*(m? —s) = 0.

This identity says that the function f(c) = o?(2—s) —2a{(m—1)(2m—1—3s)+(m—

1)?(m? — 5) has at least one root & = n. That implies
Ay = (m— 1)2(2m —1—5)2 = (2=8)(m— 1)} (m* —s) >0,

or equivalently

S —2m? +4m -1
s
=T 2wy
y? 52
Similarly, we denote p = y+2z and t = T=2)? + TRSERER The inequality is obvious

1
iftzaorpzl. Otherwise,
2 9.2
t2—2p +4p—]:1 2m

(2-p)* (m+1)*

It remains to prove that
9.2 _ 92 _1)2 _ 2
2m* +4m—1 4 1—2m S 4 - (2m —1)%(11 + 10m — 10m?) >0,
(2~ m)? (m+1)2 =9 (2—-m)2(m+1)?
which is clearly true. Equality holds fora =b=c=4d.

\Y
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According to hypothesis zy +yz + zz = 1, so we will figure out a number I such that

2l = /2(k —1). A simple calculation reveals | = —l+ 41 + Sk, and therefore the

final result
~14++v1+ 8k
—

Comment. The following more general problem can be solved by the same method.

k(z? +y?) + 22 >

% Suppose that x,y, z are positive real numbers verifying xy + yz + zz = 1 and

k,l are two positive real constants. The minimum value of the expression
kx? +1y? + 22
is 2to, where to is the unique positive real root of the equation
28 + (k+1+1)t — ki =0.

\Y

By the same method, we will solve some other problems regarding intermediate

variables.

Example 6.1.2. Let z,y, 2,t be real numbers satisfying xy + yz + 2t +tx = 1. Find

the minimum of the expression
52% + 4y2 + 522 4 ¢2.
SoLUTION. We choose a positive number | < 5 and apply AM-GM inequality

la? + 292 > 2\/2_lxy,

20% + 122 > 2V2lyz,
(5 =122 +1/2t% > 1/2(5 — 1)z,
1/2t% 4+ (5 = 1)z® > +/2(5 = D)tz

Summing up these results, we conclude that
522 + 4y + 522 + 12 > 2V2(zy + t2) + /2(5 — 1) (2t + tz).

The condition zy + yz + 2zt + tx = 1 suggests us to choose a number I (0 <1 < 5)
such that 2v2l = 1/2(5 — I). A simple calculation yields { = 1, thus, the minimum of
522 4 4y? + 522 + t2 is 2/2.

Comment. The following general problem can be solved by the same method
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* Let z,y,2,t be arbitrary real numbers. Prove that

| 2kl
2 +ky2+z2 _|_lt22 k2_+—l(xy+yz+zm+t:1:).
\Y

Example 6.1.8. Let z,y, 2 be positive real numbers with sum 3. Find the minimum

of the expression z% + y? + 23.
(Pham Kim Hung)

SOLUTION. Let a and b be positive real numbers. By AM-GM inequality, we have

z? +a? > 2az,

y? + a? > 2ay,

22+ b3 4+ b° > 3b%2.
Combining these results yields that 22 + y? + 23 4+ 2(a? + b3) > 2a(z +y) + 3b?z, with
equality for z = y = a and z = b. In this case, we could have 2a+b = z+y+2 = 3 (»).

Moreover, in order for 2a(z + y) + 3b%z to be represented as z + y + 2, we must have

2a = 3b? (3*). According to (%) and (**), we easily find out

_—1+\/3_7a 3—b 19-+/37
6 7 2 12 7

b

therefore the minimum of 22 +y2 + 23 is 6a — (2a2 + b®) where a, b are determined as

above. The proof is completed. -

\%

Generally, to handle difficult problems by this method, we need to construct a
lot of equations then solve them. This work (solving systems of equations) can be

complicated but unavoidable. The following example presents such a severe trial.

Example 6.1.4. Let a,b, ¢ be three positive constants and z,y, z three positive vari-
ables such that axz+ by + ¢z = zyz. Prove that if there exists a unique positive number

d such that
2 1 1 1

d axd T b¥d Toxad
then the minimum of x +y + z is

Va({d+a)(d+b){d + 0.

(Nguyen Quoc Khanh, VMEO 2006)
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SOLUTION. To avoid the complicated condition azx + by + ¢z = zyz, we will find the

minimum of the following homogeneous expression

(az + by + ¢c2)(z + y + 2)?
TYZ ’

Certainly, if the minimum of the above expression is equal to C then the minimum

value of z 4+ y + 2 1s equal to C, too.

Assume that m, n,p, m1,ny, p; are arbitrary positive real numbers such that m +n+

p = amy + bny + ¢p1; = 1. By the weighted AM-GM inequality, we have

-

z x"y" 2P
a:-l—y-l—z:m(m) +n(n) +P p = mmnnpp’

P amlylmlchl
a:l:—l—by-I-CZ—aml (m ) +bn1 ( 1) +Cp1 (pl) 2 mzlzml bnlp;m

o™t +2mybn1 +2n 2p1 +2p

= (az+by+c2)(z+y+2)* >

m2mn2np2pmam1 b"-lpi‘Pl ’
with equality for r_¥_ —z-, LY i. Moreover, we also need the condition
m =n pm " N
2m 2n 2p
am; +2m = bny +2n = cp1 + 2p = 1. Denote k = = = —, then

ml 'nl Pl
a b c
el —_— - —_— pmt - :1.
2am +2bn+2cp =k & Zm(k+1) 2n(k+1) Zp(k+1>

These conditions combined yield that

ak+bk+ck:_k®1+1+1_g
at+k b+k c+k a+k b+k c+k Kk

Because d is unique, we must have k = d. After a simple calculation, we get that

2mp2np @bty — =1 (d 4+ a) N (d +b) " Hd + o),

and the conclusion follows.

Comment. This inequality is generalized from the following problem in the Vietnam

TST 2001 proposed by Tran Nam Dung
% Let a,b, ¢ be positive real numbers such that 12 > 21ab + 2bc + 8ca. Prove that

1 2 3 15
SrSI>
a+b+c— 2

\%
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In some situations, solving systems of equations to find intermediate variables is
not at all real computing. Sometimes it completely depends on your own intuition,
because solving these equations to find roots can be impossible. But you can guess

these roots! That’s what 1 want emphasize in the next example.

Example 6.1.5. Let z1, 29,...,Z, be positive real numbers. Prove that

1+ Vz122 + . + Y1207, ey 22+ .+ 2y).

SOLUTION. Suppose that a;,as,...,a, are positive real numbers. According to AM-

GM inequality, we have

V(alxl) . (a2$2) cee (akl'k) < a171 + ag.’z:gk-}- e Fapzk .

aq
,k/alag....ak '

Constructing similar result for all k € {1,2,...,n}, we conclude that

Kk
1
= Yrizo..28 < — Za:i .
k i=1

n

n
E \k/.’l,‘lmg....’l,‘ks E AQpZETk,
k=1

k=1
where
1 1 1
T = + o —
k¥ataz.ar  (k+1) *+Yajas...axr1 n {/a1as...an
Finally, we will determine numbers (a1, as, ..., an) for which axrr < eVk € {1,2,...,n}.
The form of ry suggests to find ax for which ¥ajas...ax can be simplified. Intuitively,

k:k
we choose a; = 1 and a; = W With these values we have ¥ajas..ax =
kVk € {1,2,...,n}. Therefore, for all k> 1, we have
i 1 1 1
W= 1T\ T e Tt

< Kk (1_l+1_1++1_l
“(k=1)k1\k-1 kK k k+1 "7 n—-1 n
1 k-1
:(1+k_—1) <e.
For k =1, we also have

1
(117'121—2-}--2—2



Chapter 6

The Method of Balanced

Coefficients

In many problems, grouping terms in order to use classical inequalities is not easy,
especially for non-symmetric inequalities. In these cases, the coefficients of similar
terms are normally not equal to each other and therefore we not only have to use
basic inequalities properly but als@ have to case take care of the equality so that this
case is maintained throughout the solution. How should use deal with this matter?
Generally, we need to use additional variables then solve the equations to find out the

original variables in the end. This method is called the method of balanced coefficients.

In order to see this important method at work, let’s start with the following simple

example
Example 6.0.8. Let z,y, z be positive real numbers and zy+yz+ zz = 1. Prove that
1022 + 10y? + 2% > 4.

SoLUTION. Let’s first see a nice, short and a bit magic solution, before we give a
general and natural solution. By AM-GM inequality, we deduce that 2z2 + 2y? >
dzy, 82%+1/222 > 4z2z and 8y? +1/222 > 4yz. Adding up these inequalities, we have

1022 + 1002 + 22 > 4(zy + yz + 22) = 4.

97
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Equality holds for

=1y
z=y=1/3
4z =2 Aad
z=4/3.
4y =z

\%

This solution really needs to be examined. Some questions are posed: why could
we separate 10 = 2 + 87 Is it lucky and accidental? Is it obvious? If we separate 10 in
other ways, such that 10 = 83+ 7 or 10 = 4 + 6, do we go get the same final result? In
fact, every other separation is not effective and the separation 10 = 2+ 8 is not lucky.
Not surprisingly, we have already used the method of balanced coefficients, which is
hidden in this apparently obvious solution. Let’s continue with two major means of
applying this method: balancing coefficients by AM-GM inequality and balancing
coefficients by Cauchy-Schwarz inequality.

6.1 Balancing coefficients by AM-GM inequality

No matter how farniliar you are with balancing coefficients, non-symmetric inequalities
with a chaotic of coefficients always cause a lot of difficulties. Therefore, using this
method deftly can help you avoid a lot o computations. The following general proof

will explain how we got the solution in example 6.0.8.

Example 6.1.1. Let k be a positive real number. Find the minimum of
k(z?+ y?) + 22,

where x,y, z are three positive real numbers such that zy + yz + 2z = 1.

SoLUTION. We separate k = | + (k — I) (with the condition 0 < I < k) and apply
AM-GM inequality in the following form

l2? 4 ly? > 2zy
(k= 0z? +1/222 > \/2(k — )z2
(k= Dy? +1/222 > \/2(k - Dy=.

These results, combined, yield that

k(z? +y2) + 22 > 2zy + 1/2(k — 1) (zz + y2).
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6.2 Balancing coefficients by Cauchy-Schwarz and

Holder inequalities

A great difference between Cauchy-Schwarz inequality, Holder inequality and
AM-GM inequality is the case when equality holds. This feature also leads to differ-
ent ways to balance coefficients in these inequalities. Let’s contemplate the following

examples to get an overview.

Example 6.2.1. Suppose that z,y, z are three positive real numbers verifying r+y +

z = 3. Find the minimum of the expression
2t + 2y* + 324,

SOLUTION. Let q, b, ¢ be three positive real numbers such that a +b+¢ = 3. According

to Holder inequality, we obtain
(z? + 2% + 32%)(a* + 2b* +3¢*)® > (a®z + 2b%y + 3c32)* (%)

We will choose a, b, ¢ such that a® = 2% = 3¢® = k3, and if then

2%z +y+2)4 (3k3)4
B2 I 2 O R T80 (@f ¥ 260 43y )
The equality in (x) happens when g = % = % Because z+y+z=a+b+c=3, we

get a = z,b =y, ¢ = z. We find that k = and a = k, b= 2k, c = V/3k.

3
1+ 2+ 3
The minimum of 2% + 2y* + 32% is given by (**).
Comment. The following general problem can be solved by the same method
* Suppose that z,, s, ..., T, are positive real numbers with sumn and ay,as, ..., 0y

are positive real constants. For each positive integer m, find the minimum of
a 2]t +agzy’ + ...+ anz.

By Holder inequality, we find that the minimum of this expression is na™~! where

n

a =

1 1 1 '
e R
v

Example 6.2.2. Let ay,ay,...,a, be positive real numbers. Prove that

L2 4 ® <2(1+i+ +i)
a aytay 0 artayt..+a, a,  ay  an /)
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SOLUTION. Let z,, 9, ..., z,, be positive real numbers (we will determine them at the

end). According to Cauchy-Schwarz inequality, we have

3 5”% 5”% 2
(ar+as+...+ap) | =+ =2+ + =) > (1 + 20+ .+ 2k)
a) Q2 ag

k k z?  z2 x2
= < + 244
ay+az+...+ar ~ (21 +2z2 + ... +2x)? ( a1 = ap an)

Constructing similar results for all k € {1,2,...,n} then adding up all of them, we get

1 2 n

C1 Ca Cn
L—+=+..+—
ay ay + aq a1 +as+...+ay, aq aq an

where ¢, k € {1,2,...,n}, is determined by

kz? (k+1)z nxi
(14 z2+ ... +2k)?  (z1+ 2o+ .. +xp41)? T (:1:1 + 2o+ ... +z0)?

Cky =

We have to find zx for which ¢x < 2 V1 < k < n. We simply choose zp, = k then

n . n n .
J 2 1 2 2j+1
. =4k — <2k —
;(1+2+---+J)2 ;y(JJrl)z ;J (7 +1)?

1 1
=2 Z Z(m)ﬁ =2 (35~ Gy <2

The proof is completed.
\Y

Example 6.2.3. Let z1, z9, ..., 2, be positive real numbers. Prove that

2 2
z? + <x1+m2) + .+ <m1+x2+...+xn) <4(zi+zi+..+22).

2 n

SoLuTION. Let a3,a9,...,an be positive real numbers. According to Cauchy-

Schwarz inequality, we have

z? 22 % 2
a—1+a—2+... —= ) (a1 + a9 + .. +ak)>(:z:1—l—:z:2—l— Azl

Rewrite this inequality to

2
1+ x4+ ...+ 2k artas+...tay o oartoagt..tox 4
< . .
( % ) < Koo z] + oy x5+ ...
oy a9 4.0 oy o2
k2ak ke
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Constructing similar results for all k € {1,2,...,n} then adding up all of them, we get

2 2
)+ 21+ 29+ ...+ 2,
:L'?-I—( 12 2) +...+( ! 2n ) g’ylm%+’ygm%+...+’ynmfl

in which each coefficient ~y is defined by

" _ogtoagt.to ot ayt. ok +a1+a2+...+an
k k2 oy, (k+1)204 n2oy, ’

The solution is completed if there is a sequence (o, g, ..., &) such that v, <4 Vk €
{1,2,...,n}. We choose oy = Vk -k =1, then o) + 05+ ... + o = Vk. In this case

SR I S

Notice that 4/(k — )(k+3) (1/k— 1 + [k +}) <2k%/2, 50

1 <\/k+%—\/k—% 1

_ _ 1 .
BT =D h -t (Jerd

1 | 1 [ 1 =~ 1
= st/z Sa_k Z : I_Z T
j= j=k \[J— 3 =k\/It 3
2 2(Vk k-1
< _2(Vk+ ) <4
ak,/k—% k——%

Comment. The following similar result is left as an exercise.

* Let z1, 29, ...,2, be positive real numbers. Prove that

3 3
27
mi”+(‘”2ﬁ) +...+(‘”1+‘”2: +m") <G (@ +ad o +ad).

\%

Example 6.2.4. Find the best value of t = t(n) (smallest) for which the follounng

inequality is true for all real numbers x1,zq,...,2n

23 (21 +22) H o+ @1+ 22+ F20)? S Ha? F 24+ 2R).

(MYM 2004)
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SOoLUTION. Let ¢,¢q,...,cn be positive real numbers (which will be chosen later).

According to Cauchy-Schwarz inequality, we have
k 2 k2
Z zi | < Sk Z —+ (%)
i=1 i=1 G

where 81, 52, ..., 5, are determined as

k
Sk = ZC,;, ke {1,2,...,n}.
=1

L J

According to (x), we infer that (after adding up similar results for all k € {1,2,...,n})
n k 2 n n S
: 3] 22
>(a) <332
k=1 \i=1 k=1 \j=k 7

We will choose coefficients ¢, ¢y, ..., ¢, such that

S1+8+..+S _ Sa+Ss+..+8
1 - Co N

After sorme computations, we find

¢; =sinia —sin(i — 1) Vk € {1,2,...,n},

Vs 1
.Sot=———_— and we conclude that
)
2n+1 4sin —2(2:1'+1)

n k 2 n n
1
E ;) <t E m?)zz———(i mf)
k=1 (i:l ) (k:l 4sin 550y oo

where o =




Chapter 7

Derivative and Applications

We will discuss now one of the most important concepts of Mathematics. Just by
realizing the great impact of derivatives on the development of Mathematics, you will
understand how widely and deeply derivatives are affecting the world of inequalities
nowadays. Therefore it’s necessary for you to comprehend this concept and master it

as one expert.

7.1 Derivative of one-variable functions

The principal objective of derivatives is to help examine one-variable functions. To
find maximum or minimum of a“function which has only one variable, derivatives
seems to be infallible work. That’s the reason we believe that every inequality in one

variable is either solved by derivatives or impossible to be solved.

The application of derivatives to one-variable functions is not restricted one-
variable inequalities. In fact, can help you to solve many n—variable inequalities as

you will see in the following pages.
Example 7.1.1. Find the minimum value of =%, if x is a positive real number.

SoLUTION. Consider the function f(z) = z° = €*'"%. Its derivative is f'(z) =
1
e Z(Ilnz + 1). Clearly, f/(z) =0 & Inz=-1 & z=1/e In (0, Z]’ f(z)

1 . .
is strictly decreasing and in [—, +oo) , f() is strictly increasing. That means
e

z€R e

min f(z) = f (1) -
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\%

Example 7.1.2. Lel a,b,c be positive real numbers. Prove that
a® b e a? b2 ¢
+ 3t 3,32 e T2t e
B+ S+ad B+ T+ 2+a?  a?2+b
SoLuTION. We will solve the general problem for all real numbers s > ¢ > 0
af b s at bt ct
> .
bs + ¢ + ¢ +a® +as+bs - bt+ct + ct+at + at+bt

It’s enough to prove that the following function is increasing by derivative
a® b* c*

b:+cz+ca:+a:+a:+br'

f(z) =
Indeed, after a bit of calculation

sy 0" -Ina- (b® +c%) —a®(b* - Inb—¢" -In¢)
f (:L') - Z (b: + CI)Z
a®b* (a® — b*)(Ina —Inb)(2¢* + a* + b*)

= Z (a: + b2)2(bz + c:l:)2 2 0.

cyc

cyc

Comment. The following general problem can be solved in a similar fashion

* Let a),ao,...,a, be positive real numbers with sum 1. Prove that for all real

numbers s > t > 0, we have

B W 0 PR (.7 R (T R R (IS
1—0a; 1—aq T\l=—-a,/) T \l—-aqg 1—as T \l1—-an/

\%

Example 7.1.3. Let a,b,c,d be positive real numbers. Prove that

\/ab+ac+ad+bc+bd+cd S i/abc+bcd+cda+dab
6 = 4 '

SoLUTION. Consider the function

fz)=(z—a)(z=b)(z—c)(z—d)=2*— Az’ + B2* - Cz + D

where

A=Y "a, B=) ab, C=) abc, D = abcd.

sym sym sym
Since the equation f(z) = 0 has 4 positive real roots, we infer that (by Rolle the-
orem) the equation f’(z) = 0 has 3 positive real roots, too. Denote these roots

m,n,p (m,n,p > 0), then

f(x) = 4(z— m)(z—n)(z —p) = 42° — 4(m + n + p)2? + 4(mn + np + pm)z — dmnp.
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Notice that we also have f'(z) = 42® — 3422 + 2Bz — C, so B = 2(mn + np + pm)
and C = 4mnp. By AM-GM inequality, we conclude that

,/_f_=\/m”+’;p+pm > g = ,3/%.

Comment. Suppose that 1, 29, ..., Z,, are positive real numbers and d;,d,, ...,d,, are

the polynomials defined as

1
dk = EE Z:L']_Il,'z...:l:n.

n gym

With the same method, we can prove the following results
* (Newton inequality). For all positive real numbers x1, 2, ..., Zn
drr1dk—1 < d2.
% (Maclaurin inequality). For all positive real numbers z,x,, ..., Tp
dy > dy > .. > dy > ... > ¥d,.
\%

Example 7.1.4. Prove that 0 < a <1 <b<3<¢<4ifa,bd c are real numbers
satisfying the conditions
a<b<c,a+b+c=6,ab+ bc+ca=09.

(British MO)
SoLUTION. Denote p = abc and consider the function
f(z) =(z—a)(z—b)(z—¢) = z° — 622 + 92 — p.

We have f/(z) = 322—12z+9 = 3(z—1)(z—3). Therefore f/(z) = 0orz =1vz =3.

Because f(z) has three roots @ < b < ¢, we infer
1<6<3, fHfB) L0

Note that f(1) = f(4) = 4 —p and f(0) = f(3) = —p, so we have 0 < p < 4
That implies f(1) = f(4) > 0 and f(0) = f(3) < 0. If f(0) = f(3) = O then
a = 0,b = ¢ = 3 and the desired result is obvious. If f(1) = f(4) = 0 then a =
b = 1,c = 4 and the desired result is obvious as well. Otherwise, we must have
f0)f(1) <0, F(1)£(3)<0, f(3)f(4)<0 and therefore a € (0,1), b€ (1,3), ¢ € (3,4).
The proof is finished.

\Y
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7.2 Derivative of n-Variable Functions

If you feel that one variable functions are easy already, if you feel their extremums can
always be easily found by derivative, let’s take a glimpse at functions of more variables.
Although it’s much more difficult to find the extremums of functions of n variables,
we approach these problems is the same as what we do with one-variable functions.
If there are some conditions that restrict variables, try to change and eliminate these
conditions and make a new expression where every variable is independent from each
other, then find the extremum of this new expression as a one-variable function of

each variable. Let’s see the following examples to clarify the method.

Example 7.2.1. Let a,b, ¢ be positive real numbers. Prove that
a® + b + ¢ 4 3abe > ab(a + b) + be(b + ¢) + ca(c + a).

SoLuTioN. WLOG, assume that a > b > ¢. Consider the function of a: f(a) =
a® +b® + ¢ + 3abe — ab(a + b) — be(b + ¢) — ca(c + a). We have

f'(a) = 3a® + 3bc — 2ab — b* — 2ac — .

Notice that f”(a) = 6a —2b—2¢ > 0 and f”(b) > 0, so f'(a) > f/(b) = ¢(b—¢) > 0.
Also, f'(z) = f'(b) 2 0, (V)z € (b,a), since f” is linear, therefore positive on (b, a).
That implies f(a) > f(b) = ¢(b — ¢)2 > 0. The proof is finished.

\%

Example 7.2.2. Let a,b, ¢, d be positive real numbers such that
2(ab+ bc + cd + da + ac + bd) + abe + bed + cda + dab = 16.
Prove the following inequality
a+b+c+d> g(ab-l—bc-l—cd-l—da +ac+ bd).
(Vietnam MO 1996)

SOLUTION. By a similar reasoning as in example 7.1.3, we deduce that there exist

positive real numbers z, vy, z for which

Zaz%Zm, Zab=2§:my, Zabc=4myz.
sym

sym sym sym sym

It remains to prove that if zy + yz+ 22+ zyz =4 then 2+ y + 2 > 2y + yz + zz.
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Certainly, there exist two numbers, say = and y, both greater than 1 or both smaller
than 1. In this case, (z—1)(y—1) >0 = zy+1 > z+y. Wedenote m = z4y,n =2y

4 —
n,Ifm?_tlthen:v+y+z242:z:y+z:z:+za: and the conclusion

2
. ) m
follows. Otherwise, m —1 < n < T < 4 and we need to prove

then 2z =
m+n

4—n > (4—n)m
m-+n—" m-+n

m -} +n

s f)=-n*4+nm—-1)+m?—-4m+42>0.
Notice that f'(n) = —2n+m—-1< —n+m—1<0, so f(n) is decreasing, therefore

2 — m2)(m — 2)2
f(n)Zf(-Z—)'——(w 1)6( 2) > 0.

We are done. Equality holds fora =b=c=d =1.

b4

\Y
Example 7.2.8. Let a,b,c be non-negative real numbers. Prove that
a® 4+ b+ + 9abe +4(a+ b+ ¢) > 8(ab + be + ca).
(Le Trung Kien)
SoLUTION. We denote
f(b) = b*+ b4+ 9ac — 8a — 8¢c) + a* + ¢ + 4(a + ¢) — 8ac.

By AM-GM inequality, (a® + 4a) + (¢ + 4¢) > 4a? + 4¢% > 8ac, so the problem is
proved in case 4+ 9ac > 8(a+c), with equality fora = c=2,b=0anda=b=c=0.
Otherwise, let £ = a + ¢,y = ac then, 8z > 9y + 4. Notice that

f’(b)=3b2—-(8:l:—9y-—4)’ so f'(b) =0 « bz\/g_x__g__ﬁ

and therefore

b) > = 8z — Oy —4)3/2 4 23 4 4z — 3zy — 8y = g(y).
£(0) _f( d ) (s =0y —4) )

2 - 1
Because y < . and y < 8z —4 (that also means z > -2-), as get

4
22 8x—4

u<< ] —_——— = .
y_mln(4, 5 )

g (v) = 3+/3(8z — 9y — 4) — (3z + 8) < 34/3(8z —4) — (3z+ 8) < 0.
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8z —

4
Thus g(y) is strictly decreasing and therefore g(y) > g(t). If t = then g(t) =
23 4+ 4z — 3zt — 8 > 0 (or eqmvalently a® +c+4(a+c) —8ac 2 0). It’s enough

to consider the remaining case { = % and prove that g(t) > 0. Denote s = —2- the
2
inequality g ( %) = g(s?) > 0 is equivalent to
h(s) = 253 — 852 +8s—-—(16s—93 4)%? > 0.
(s) 373 4)
165 — 952 — 4
Because K (s) = 652 — 165+ 8 — (16 — 185)\/8—35—, if K'(s) = 0 for some s
8 8 \/

then we must have 3= <g< ——— + and

3(2s? —83+4)2 (9 — 85)2(165 — 952 — 4)
o (s—1)(189s% — 49552 + 3725 — 76) = 0.

Notice that the equation 189s% — 49552 + 3725 — 76 = 0 has exactly one real root in

8 8+ 28
9
fora=b=c=1lora=b=c=0o0ra=>b=2,¢c=0 up to permutation.

the interval , SO 1t’s easy to infer that h(s) > h(1) = 0. Equality holds

\Y

Example 7.2.4. Suppose n is an integer greater than 2 and that the n positive real

numbers zy, Zq, ..., Tn, satisfy the condition
1 1
(z1 + 22 + .. +xn)( + e +—)<(n+\/ —3)2,
2
Prove that every 3-uple (z;,z;,2,) (1 < i< j <k < nandi,jk € N) can be the

length-sides of a triangle.
(Improved IMO 2004, B1)

SoLUTION. It suffices to prove the following result (that directly solves this problem)

Suppose that z1 > z9 > ... 2z, > 0 are real numbers verifying z1 > 9 + x3, then

1 1
(x1+x2+...+xﬂ)( +—+. +—)>(n+\/ — 3)?
2
Indeed, we will prove it by induction. For n = 3, the inequality becomes
1 1 1
(z1 + 29 + z3) -l— - + — - >10 & Z:z:l:vg(:vl + z3) > Tzyz023.

cyc
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Let f(z1) = > ziza(z1 + 22) — Tz12223 then

cyce

f/(z1) = 221 (29 + x3) + 22 + 22 — Tzozs > 2(zg + x3)° + z3 + 23 — Twgzs > 0.

This implies that f(z1) > f(z2 —I-.:L‘s) = (29 + x3)?(22 — 23) > 0. We are done.

Now return to the problem of n + 1 variables (with the supposition that it is true for

n variables). We need to prove that

1 1 1
(:z:1+:1:2+...+:1:n+1)(——I———}-...-I— )>(n+\/10—-2)2.
Z1 Z2 Tn+1

Denote A = Z z; and B = Z z;!, then AB > (n + v/10 — 3)? by hypothesis. Let
T =Ty then A/B >z2 > :z:2 = y/A/B > z. Denote

f(@) = (= + A) (i—+B) :B:z:+%+1+AB.

We have of course f'(z) = B — % and therefore f'(z) =0 & z=+/A/B. Thus

fl@) > f (\/%) = (1+\/A_§)2 > (n+ V10— 2)2.

The inductive step is completed and we are done.
\Y%

Example 7.2.5. Let a,b, ¢ be positive real numbers such that 12 > 21ab + 2bc + 8ca.

Prove that
15

7-
(Tran Nam Dung, Vietnam TST 2001)

-+

+2%

o N
o lw

SR

SorLuTIioN. Although this problem has been solved in the previous part by balancing
coefficients, it’s seem to be more intuitive to give a solution by derivatives. Let z =

1, Y= %, z = % We will prove an equivalent problem as follows.

15
If z,y,z > 0 and 12zyz > 22 + 8y + 212 then P(z,y,2) =2+ 2y + 32 < 5

Indeed, by hypothesis we have z(12zy—21) > 2z + 8y > 0. So we infer that 12zy > 21,

7
or x> m and z > % That means

2z + 8y

Qay — 7 = f(@).

Pz,y,2) >+ 2y +
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We have of course
162%y2 — 562y — 32y% + 35

f’(il?) = (4:cy __7)2

7 7
In the range (4—, +oo) , the equation f’(z) = 0 has only one root z = zg = @ +
Y

-

£/32y2 + 14 . . . ...

——3:1——}-——. At z = z, f'(z) changes its sign from negative to positive, so f(x)
Y .

attains the minimum at zg. It implies

f(z) > f(zo) = 220 — % = P(z,y,2) 2 f(z) +2y > f(zo) + 2y = 9(v)

where

g(y)—2y+——+ \/32y2 + 14.

A simple calculation will show that

d(¥)=0e (842 - 9)1/32y2 +14 - 28 = 0.

Denote t = 4/32y2 + 14, then ¢ > 0. The above equation becomes t3 — 50t — 112 = 0.
. . - 5 5

This equation has only one positive real root t = 8, or y = yg = & thus ¢’ (Z) =0.

In the range y > 0, at y = yo, ¢'(y) changes its sign from negative to positive, hence

15
g(y) attains the minimum at yo. So we conclude that g(y) = ¢ (—Z—) =3 and

5 5 2
then P(z,y,2) 2 g(y) > g(yo) = 1— Equality holds for y = 7E= 3,z = g or
1 4 3
==b==,c==. W :
3 5 5" e are done

\%

Example 7.2.6. Let a,b,c be three positive real numbers such that

1 1
(a—l—b+c)( —l—b-l- )216.

Find the minimum and mazimum value of

o

P = 9— + - + E..
b ¢ «
(Pham Kim Hung)

SoLUTION. We will first solve the problem of finding the minimum value. To find this

value we can assume that a > b > ¢ because in this case, we have

Z Z (a—b)a;cc)(c— b) <o.

cyc cyc
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Denote z = % > 1,y = - > 1. The hypothesis yields that

1 1 1
z+y+—+—+-—+zy=13.
Ty = ¥

1
Let now z +y =s and zy = ¢, thenP=s+?and

s 1 13t —t2—1
t+-+-=13 =
shiti+y =8 t+1
This relation implies that
13t—t2—-1 1
P = ) —— P
@) i+l 1
Then
1) = (B8-2t)(¢+1) - (13 —-t*-1) 1
- (t+1)2 t2
_ = -24+14 1 15 241
T (E+1)2 £2 (t+1)2 t2

It’s easy to infer that

2
1
=0 t2+1)(t+1)2 =15 & (t+%+1) =16 & t+ - =3

3 5 ..
Because t = ab > 1, f/(t) =0 & t =1t = +2\/_. Moreover, the supposition

z,y > 1showsthatt+1—s=(z—1)(y—1) >0ort-+1 > s. It implies

13t —t2 -1

<t+1 © 22 —-11t+2>0 =t >
t+1

11 105
L VI,

Thus f(t) is strictly decreasing. TS find the minimum of f(t), it’s enough to find the
maximum of ¢. Notice that s2 = (z + y)2 > 4¢, so we obtain

2
1
Qo -2 -1 24417 = (18-1-1) 24 (47 42)

1\2 1 1 1
=>(t+?) —30(t+?)+16120 PN (t+?—7) (t+?—23)20-

1 1
Furthermore, t + n < 23 (because 1 <t < 13), so we must have ¢ + n > 7 or

7435

22—Tt+1<0 & t< 5
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7 5
For this value of ¢ (t=+T\/_), we have s = 24/ = V14 +6vV5 = 3+ /5 and

conclude that
13—+/5

1 2
I t) = -—=3 5 = ,
min f(t) s+ —I—\/_—l-7+3\/5 5

3+5

a b .
with equality for — = - = /1 = and permutations.
c

b 2
13 5
Similarly, with the same method, we find that max f(¢) = %, with equality for
¢ - é = 3-V5 and permutations.
b ¢ 2

\Y

Each problem has its own features. If you can fathom the particular features,
you can find particular methods to solve them. For example, you are aware of using
balancing coefficients to solve non-cyclic inequalities or using symmetric separation
to solve symmetric inequalities. These solutions are, generally, technical and hard to
figure out. However, derivatives are different. Although solutions by derivatives are,
in fact, coarse and require some long computations, they are very natural. That’s the
reason why derivatives are so important and indispensable in every part of the field

of inequalities and mathematics as well.



Chapter 8

A note on symmetric

inequalities

In the beautiful world of inequalities, symmetric inequalities seem to be the most
important and most beloved kind. This kind of inequalities also plays a major part
in Mathematics Contests all over the world and the overview in this chapter is really
necessary. Although there are a lot of interesting stories regarding symmetric inequal-
ities that will be unveiled in the following chapters; right now, in these pages, we will
review three essential matters: primary symmetric polynomials, normalization skill

and symmetric separation.

8.1 Getting started

In general, a symmetric inequality of n variables a;, a9, ..., a, can be rewritten as
f(aha?, "-7an) 2 0
where
f(ah as, "'7(1'77.) = f (ai11a‘i21 ceey ain)

for all permutations (i1,19, ...,%n) of (1,2,...,n).

Because of the symmetry, we can rearrange the order of variables (that means we
can choose an arbitrary order). Because of the symmetry, we can estimate a mixed

expression by smaller expressions of one-variable.

117
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Schur inequality is a very important symmetric inequality and it would be a

shortcoming if it wasn’t discussed now.

Theorem 10 (Schur inequality). Suppose that a.b, ¢ are non-negative real numbers,

then
a® + 6% + & + 3abe > ab(a + b) + be(b + ¢) + ca(c + a).

PROOF. Because of the symmetry, we can assume that a >b>c Let z =a - b,y =

b — ¢ and rewrite the inequality to the following form

Za(a—b)(a—c) >0 & c(z+y)y— (c+y):cy+(c+:z:"+y):z:(:v+y) >0

e @ +zy+y?)+2%(z+2y) >0

which is obvious because ¢,z,y > 0. The equality holds for z =y =0 and z = ¢ =0,

that means a =b =cor a = b,c = 0 up to permutation.
Comment. This inequality is, in fact, equivalent to the following well-known result
* Suppose that a,b, ¢ are non-negative real numbers. Prove that
(a+b—c)(b+c—a)(c+a—b) < abe
Naturally, we may wonder if the following similar result is true or false
W Let a,b, c be positive real numbers. Prove or disprove that
a® + 8% + & +3a%%c? > af(b+¢) + ¥ (c+a) + FPa+ b).

Unfortunately, this inequality is wrong. We only need to choose a — 0 and b = c.

There is even no positive constant k such that
a® + 88+ 8+ ka®b2? > a®(b+¢) + b (c + a) + F(a + b).
However, the following inequality holds
* Let a,b, c be three real numbers. Prove that
a® + 1%+ ® + a?b2? > % (a®(b+c) + bP(c+a) +cP(a+1b)).
SOLUTION. According to AM-GM inequality and Schur inequality, we deduce that

32:a6 + 322122 >2 Za6 + X:a‘l(b2 + c2)

cyc cye cyce
= Xj(a6 + a%b?) + Xj(a6 +a*c?) > 2Za5(b +¢).
cyc cyc cyc

v
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Theorem 11 (General Schur inequality). Suppose that a,b, c are non-negative real

numbers and k is a positive constant, then
aF(a =b)(a—c) + b*(b—a)(b—c)+ cF(c—a)(c—=b) > 0.
PROOF. Certainly, we may assume that a > b > c. In this case, we have
&(c—a)(c—b) >0,

aFla—b)(a—c) +bF(b—a)(b—c) = (a = b) (" — b¥+1) + c(a® — bF)) > 0.

Summing up these results, we are done. The equality holds for ¢ = b = ¢ and a =

b,c = 0 up to permutation.

Comment. By a similar approach, we can prove that the inequality is still true if
k < 0. Morever, if k i1s an even integer, the inequality is true for all real numbers a, b, ¢

(not necessarily positive).

\Y%
Example 8.1.1. Let a,b, c be nongnegative real numbers with sum 2. Prove that
a + b4+t abe > a® + b3+ B
SOLUTION. According to the fourth degree-Schur inequality, we have
a* + b+ +abe(a+b+c) > ad(b+c) +b2(c+a) + A(a+b)
or equivalently
2(a* +b* +c*) +abe(a +b+c) > (a® + b + ) (a + b+ c).

Putting a + b+ ¢ = 2 into the last inequality, we get the desired result. Equality holds

fora =b=c= g oro= b =1, c= 0 or permutations.

\Y

Example 8.1.2. Let a,b, c be positive real numbers. Prove that
o b E _
; = +— — 1+ —= — — 2
V0O +E)BE +e3) Vil +n)(ed+a®) o a+b) (et + %)
(Pham Kim Hung)

S
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SoLuTION. By Holder inequality, we deduce that

2 3
(Z\/ b+ o) bs+cs)) (Zag(b“”)(bs“"s)) 2 (Zaz)

So it is enough to prove that

3
4 (Zﬁ) >9> a’(b+c)(b*+ )

cye cye

< 42 a®+3 z:a‘l(b2 + ¢?) + 2462622 > 9acha2(b +c).
cyc cye cyc

According to the third degree-Schur inequality Y a?(b+¢) < Y a® + 3abe, so it’s

cye cyc¢
enough to prove that

4 Z a®+3 Z a*(b? + ) > QZ a*be + 3a%b?c?
cyc cyc cyc
which is obvious by AM-GM inequality because
22 a® = Xj(a6 + %) > Z a?b?(a? 4 b?) = Za4 ® + ) >2 Za4bc > 6a?b2 2.
cyc cyc cyc cyc cyc

We are done. Equality holds for a =b = c.
\Y%

Example 8.1.3. Suppose that a,b, c are non-negative real numbers. Prove that

a? b?
> 1.
2b2 — be + 2¢2 + 2¢2 — ca + 2a2 +2a2—-ab+2b2 21

(Vasile Cirtoaje)

SoLuTION. According to Cauchy-Schwarz inequality, we deduce that

Z a2 (a2+ b2 + c2)2
22 —

> .
be +2¢? T a?(2b? — be + 2¢?) + b%(2¢? — ca + 2a?) + ¢?(2a? — ac+ 2b?)

It suffices to prove that

2
(Z a2) > X:a2(2b2 —bc+28) & Z a? + abe (Z a) >2 Zazbz.
cyc cyc cyc cyc cyc
According to the fourth degree-Schur inequality, we conclude that

Za + abe (Za) > Eab(a +b2) > 2§:a2b2

ayc cye cyce

We are done. Equality holds for @ =b = ¢ and & = b,.¢ = 0 or permutations.

v
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Example 8.1.4. Let a,b, ¢ be non-negative real numbers. Prove that

© P C S aibre
b2 —bc+c¢?  c2—ca+a? a?—ab+b2 ™ )

SoLUTION. Applying Cauchy-Schwarz inequality, we have

Z ad _ Z at (a® +b? 4 ¢?)?
£ b? —be+ c? B S~ a(b® —be+c?) T ) a(b? —be+c?)’
cyc

[t remains to prove that

() 2(Bew ) ()

or
Za”" +22<12b2 2 (a+ b+c)Za2(b+c) - 3abc§:a
cyc eyce eye eye
or
Za"‘ +acha > Zas(b+ c).
cyc cyc cyc

This is exacly the fourth degree-Schur inequality, so we are done. Equality holds for

a=b=cora=0>b,c= 0 up to permutation.
\Y%
Example 8.1.5. Let a,b, ¢ be non-negative real numbers. Prove that
a2Vb2 —be+ c® +b2v/c? — ca+ a? + *Va? — ab + 62 < a3+ b® 4+ .
SOLUTION. Applying AM-GM inequality, we have

Za2\/b2 —bc+ 2 = ar/a?(b2 — bc + c?) < %Za(cﬁ + b2 4+ ¢ — be).

cyc cyc

Then, by the third degree-Schur inequality we get that
ZZaS - Za(a2 + b2 +c?—be) = Zas + 3abc — Zab(a+b) > 0.
cyc cyc cyc cyc

We are done. Equality holds for a = b = ¢ or a = b,¢ = 0 up to permutation.
\Y%

Example 8.1.6. Let a,b, ¢ be non-negative real numbers. Prove that
al b3 s 9 2. 9

+ -+- >a“+b°+ .
V2 =bc+c2 Vi —cat+a? Va2 —ab+ b2
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(Vo Quoc Ba Can)

SorLuTION. Applying Cauchy-Schwarz inequality, we deduce that

Z a3 S (a® + b2 + ¢2)?
V2 —bctr 2 " avbi—bet+ R+ bJ/cE —cata?+cva? —ab+ b2

cyc

So it is enough to prove that
D avb? —be+c? <a® + b2+
cyce

Cauchy-Schwarz inequality yields that

2
(Z aVv/b? —be+ c2) < (Z a) (Z a(b? —bc + cQ)) .
cyc cyc cyc
Thwn, by Schur inequality we deduce that

(ZaQ)Q— (Za) (Za(b2—bc+c2)) =Y a*+abc) a-) ad(b+¢)20.

cyc cyc cyc cyc cyc cyce

The proof is finished. Equality holds for a = b = ¢ and @ = b, ¢ = 0 and permutations.

\%

8.2 Primary symmetric polynomials

Suppose that z1, 22, ..., Z», are real numbers. We define their primary symmetric poly-

nomials for each k € {1,2,...,n} as follow

Sy = inlxiQ'”mik
in which the sum is taken over all {iy,is,...,ix} C {1,2,...,n}.

An important and classical result on primary symmetric polynomials is that

* Fvery symmetric polynomial of xy, xa,...,Tn can be expressed as a polynomial

with variables the primary symmetric polynomials of 1,9, ..., Zn.

The proof of this theorem won’t be showed here and it would better be solved
by yourself as an algebraic exercise. According to this theorem, examining symmetric
expressions can be turned into examining primary symmetric polynomials. In this
part, however, we only concentrate on applying primary symmetric polynomials in

proving three-variable inequalities.
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Example 8.2.1. Let a,b, c be positive real numbers with sum 2. Prove that
a?b? + b2c® + *a® +abe < 1.
(Pham Kim Hung)
SOLUTION. Because a + b+ ¢ = 2, the inequality is equivalent to
(ab + bc + ca)® < 1 + 3abe.

Denote z = ab + bc+ ca and y = abe. We are done if z < 1. Otherwise, z > 1, and by
AM-GM inequality, we deduce that

H(a+b—c) SHabc = 8H(1 —a) < Habc = 84 9y > 8.

cyc cyc cyc

So it suffices to prove that
1
:z:2§1+§(8m—8) & 322 -82+45<0 & (z—1)(32—5) <0

which is obvious because 1 < z < % < § The equality holds fora =b=1,c=0 up

W

to permutation.

\%

Example 8.2.2. Suppose that a,b, ¢ are non-negative real numbers such that a® +
b2 + ¢ = 1. Prove the inequality

b
a+b+c_<_\/§+%.

SOLUTION. We denote z = a+ b+ ¢, y = ab+ bc + ca and 2 = abe. By the fourth

degree-Schur inequality, we have

Za4+acha2 Zas(b+c)

cyc cyc cyc
2 2
& (Z a2) -2 (Z ab) + 6abc (Z a) > (Z a2) (Z ab)
cyc cyc cyc cyc cyc
292 +y—1
e 1-22 462>y & zzu— (%)

6x
Notice that = = /T + 2y, so if y < %, we have done (because z < v2). Otherwise,

according to (), it suffices to prove that

92y%> +y—1)
142y <vV2
VI+2y V24 TN T
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Vit2y 92y — )(y + 1)
V2+TH+2y — 24 '

1
Because 1 > y > 5 We conclude that

& (2y—1)

VIF V3 <9 Nyt
V24+T+2y ~ V3+v2 167 24

Equality holds for a = b = = 0 or permutations.

1
ﬁ, c
\Y%
Example 8.2.3. Let a,b, ¢ be positive real numbers satisfying abc = 1. Prove that
1 1 1 1 1 1
[¥at+b 1+btc 1tcta = 2ta 246 24¢
(Bulgarian MO 1998)

SOLUTION. Denote S =Y a,P = ab,Q = abc. By some calculations, we get that
cyc cyc
1 S?24+4S+3+ P
LHS_Z S+1—a S24+2S4+PS+P

cyc

1 124+4S+ P
RHS = = .
S §2+a 9044S + 2P

So it suffices to prove that

S24+4S4+3+ P < 124+4S+ P
S24+2S+PS+P — 9445+ 2P’

which is reduced to
(3P —5)S%+ (S —1)P? + 6PS > 245 + 3P + 27.
Because abc = 1, we deduce S, P > 3, therefore
LHS > 45% + 2P%2 + 6PS > 128+ 6(P —1)S + 6S + 2P?
> 248 + 3P + (P? 4+ 65) > RHS.
Equality holds for S = P = 3 or equivalently toa =b=c=1.
\%

Example 8.2.4. Let a,b,c be positive real numbers. Prove that

a " b N c n abe >5
b+c ct+a a+b 2a3+b3+3) T3
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(Pham Kim Hung)

SoLuTION. WLOG, we may assume that a + b+ ¢ = 3. Denote x=ab + bc + ca and

y = abc. Then we have
abc Y

ad+ b3+ 3 :27+3y—-9:r’

Z a 27+ 3y—6z
b+c  3xz—y

cyc¢

We need to prove that

27 + 3y — 62 v S 5
3z—vy 227+ 3y —92) — 3
By AM-GM inequality, [](3 —2a) < [] @, so 9+ 3y > 4. Moreover, the left hand
cyc cyc

side of the above expression is a strictly increasing function of y, so it suffices to prove

that
27+ (42 —9) — 6z (4= —9) S 5

32— 14z —9) 627+ (4z—9) —92) ~ 3
3(18 — 2z) 4z —9 > 5 3(3 — z)(153 — 50z)
9+ 52 6(18 —5z) — 3 2(9+4 5z)(18 = 5z) —
which is obvious because z < 3. Equality holds forz =3 ora=b=c=1.

\Y%
Example 8.2.5. Let a,b, ¢ be real numbers with sum 3. Prove that
(1+a+a®) (L+b+b%) (1+c+c?) > 9(ab+ b + ca).
(Pham Kim Hung)
SOLUTION. We denote
r=a+b+c, y=ab+bc+ca, z=abc.

According to the hypothesis, z = 3, so we can rewrite the inequality to

z2+z+l+Z(a+a2)+Zab+2a2b2+abc (Za+ Zab) +Za2(b+c) > 9y

sym sym sym sym sym sym
& 22+z+1+x+(a:2—2y2+y+(y2—2xz)+z(x+y)+zy—3z2 Oy
& z2—2z+1+(:r—y)—z(:r—y)+(:r—y)2+3:z:y2 Oy
& (z=1)? = (z=1)(z—y)+(z—y)*> >0.
The last inequality is obvious. Equality holds for z =1,z =yora=b=c=1.

\%
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Example 8.2.6. Let a,b, c be positive real numbers such that abc = 1. Prove that

1 + 1 + 1 + 1 S
1+3¢ 143 143 14+a+4+b+c™

(Pham Kim Hung)

SOLUTION. We denote z = a+ b+ c and y = ab+ be+ ca. Then the inequality can be
rewritten to

3+ 62+ 9y 1 1 25— 3z
>1 & >
2843z+4+9% 14z~ 142~ 28432+ 9y

& 322 —102+9y+3>0.

Denote z = g Because y? = (ab+ b+ ca)? > 3abc(a+b+c) = 922, it follows that

y > 3z. Therefore it suffices to prove that
272% — 5722 +272+3>0 & 3(z—1)(92+ 92210z —-1) > 0,
which is obviously true because z > 1. Clearly, the equality holds fora =b=c=1.

v

Example 8.2.7. Let a,b,c be non-negative real numbers with sum 1. Prove that

ab+ bc+ ca
a? + b2 + ¢ 4 16abc

> 8(a?b? + b2 + c*a?).
(Pham Kim Hung, MYM)

SoLuTION. Denote z = 4(ab + bc + ca) and y = 8abc then we obtain

2
2o 2-1-2% . 22ipld+2t="_Y
a” + 0" +c 5 a“b® +b°c” + cta 62

We can rewrite the inequality to the form
22 > (4 — 2z + 8y)(2? — 4y)

& z(z—1)? >4y ((z — 1)(z +2) — 4y)
& z(z—1)% +16y% > dy(e — 1) (z + 2).

. 4
Obviously, = < 3 If z < 1, we are done immediately. Otherwise, suppose that = > 1.
By the third degree-Schur inequality, it’s easy to get 8(z — 1) < 9y. Considering z

4
as a parameter in [1, §] , we will prove that f(y) > 0, where

fly) = 16y? — dy(z — 1)(z + 2) + z(z — 1)2.
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Indeed, notice that = > 1, so f(y)+is an increasing function because

Fly) = 32y — 4(z — 1)z +2) > 32—8(5‘—1) — 4z —1)(z+2)

o 256z —1)  40(z —1)
=79 3

> 0.

Therefore, it’s sufficient to prove that f (8( 1)) >0or

16- (@)2—4 (8(3”9 )) (z—1)(z+2) +z(z—1)2 >0

1024 448 23z
e 2o(a 424250 & 85 2
® 3 ( t2)+220 & o2

4
which is true because z < 3 The problem has been completely solved and equality
holds for a = b = %, ¢ = 0 or permutations.
Comment. We have a similar inequality as follows

* Let a,b, ¢ be three side lengths of a triangle whose perimeter is 1. Prove that

ab+bc+ca
a?b? 4 b2¢? + c2a? + 1Tgabc

\%

< 8(a? 4+ b% + ¢?).

Example 8.2.8. Let a,b, ¢ be non-negative real numbers with sum 2. Prove that
o + 6% 4+ ¢? > 2(a33 + b3 + Pa® + 4a%° P).
(Pham Kim Hung)
SOLUTION. Write p = ab+ bc + ca and g = abc. The inequality can be rewritten to
(a+b+c)? —2(ab+bc+ca) > 2(ab+be+ ca)® —6abe(a+ b+ c)(ab+be+ ca) +14ab? 2.

& 2—p>p®—6pg+ 7>

8p—8 . . . .
—p——}, then ¢ > r according to Schur inequality. Consider the

Let » = max< 0, 5

function
f(g) =7¢* —6pg+p> +p~2.

Since f'(q) = 14q — 6p = l4abc — 3(a + b + ¢)(ab + bc + ca) < 0, we deduce that
f(g) £ f(r). If p <1 then r = 0 and we can conclude that

f@<fr)=p+p—2=(p-1)P*+p+2) <0
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Ifp>1, wegetr= &g_—lz, and the inequality f(r) < 0 is equivalent to

7(§%;1))2—6p(8—(p9_—1))+(p—l)(P2+p+2)SO

448(p—1) 16

37p _ 236
81 3

p 2 < 2 v
+p +10+2__04:>;r)+81 3L =

4 .
This last inequality is true since p < 3 Equality holds fora = b = 1,¢ = 0O or
permutations.

\%

8.3 Normalization skill

An important technique that is frequently used in proving symmetric inequalities is
normalization. To understand this technique, we first need to clarify the difference

between homogeneous functions and non-homogeneous functions.

Definition 2. Suppose that f is a function of n variables aq,a,,...,a,. We say that

f is a homogeneous function if and only if there exist a real number k such that
f(ta1,tasg, ..., tay) = thf(a1, a0, v @n) Vt,a1,a9,...,an € R.

Almost all inequalities we have seen so far are homogeneous. In this case, a con-
dition between variables z;,z9,...,z, such as 21 + 29 + ... + , = n or z123...2, = 1
is meaningless (because we can divide (or multiply) each variable by arbitrary real
numbers but the result of the problem is not affected). Sometimes, the condition only

helps simplify the appearance of the problem, as with the following example

Example 8.3.1. Suppose that a,b, ¢ are three real numbers satisfying a®+b%+c* = 3.

Prove the following inequality
Ab+c)+b(c+a)+3(a+b) <6

SoLuTION. Certainly, the inequality is non-homogeneous. However, the condition a2+

b2 + ¢ = 3 can help change it to homogeneous as
2
ABb+c)+b(cta)+Pat+b) < §(a2 + 6% 4+ )2

Rewrite this inequality to

22&4 +4Za2b2 > 32ab(a2+b2)

cyc cyc cyc
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& Z(a4+b4—3ab(a+b)+4a2b2) >0 & Z(a—b)4+32ab(a—b)220,

cyc cyc cyc

which is obvious. Equality holds for a =b =¢, and thena =b=c=1.
Comment. Consider the general problem as follows

* Suppose that ay,as, ...,a, are non-negative real numbers such that a% + a? +

+ ... + a2 = n. For what value of n then the following inequality holds
ad(ag+az+...+an) +ad(ar+az+...+an)+..+ad(ar+ag+ ...+ an_1) < n(n—1)7

Only two numbers satisfy this condition: n = 3 and n = 4. If n = 4, the inequality

is (after changing a1,as,a3,a4 to a,b,¢,d)

4Za3(b+c+d)§3(a2+b2+c2+d2)2

cyc

& ) (a®+ b —40% —4b%a +62%%) > 0 & » (a—b)* >0.

cyc cyc

\%

Changing non-homogeneous inequalities to homogeneous inequalities as above
seems to be very intuitive. But what about the reverse? Is it unreasonable if we change
a homogeneous inequality to a non-homogeneous one? Does it have any meaning? To

answer this question, let’s see an example

Example 8.3.2. Let a,b, ¢ be non-negative real numbers. Prove that

\/ab+bc+ca < \3/(a+b)(b+c)(c+a).
3 - 8

SoLuTION. WLOG, suppose that ab+bc+ca = 3. By AM-GM inequality, we deduce
that a + b + ¢ > 3 and abc < 1. Therefore

(a+b)b+c)(c+a)=(a+b+c)(ab+ bc+ ca) —abec=3(a+ b+ c) —abc > 8

N /ab—l—b3c+ca <1< \;;/(a+b)(b48—c)(c+a).

The proof is completed. Equality holds for a = b= c.

\%

Let’s review this solution. Its exceptional feature is the step of assuming that

ab + bc 4+ ca = 3. Why can we do so? In fact, if a = b = ¢ = 0, the inequality
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b .
is obvious. Otherwise, let o' = a;,b’ = Z’CI = ; (t > 0). The inequality is true
e ab+bc+ ca
for a,b,c if and only if it’s true for a’,b’,c¢’. Just choose t = ——+—§— then

'V + b + da’ = 3. Because the inequality is true for o/, ¥, ¢’ (as we proved), it must

be true for a, b, c.

Let’s analyze another fact. What happen if we suppose that a + b+ ¢ = 3 or
abc = 1 instead of ab 4 be + ca = 37 However, they do bring us either a much more

complicated solution or even nothing.

The procedure we used is called normalization. This skill is widely applied for
homogeneous inequalities because these inequalities allows us to suppose anything
that we need: a+b+c = 3,ab+bc+ ca = 3, etc. Sometimes, solutions by normalization

are unexpectedly short and nice as in the following examples

Example 8.3.3. Let a,b, ¢ be non-negative real numbers. Prove that

(2u+b+c)?  (2b+c+a)? (2c+a+d)?
202+ (b+¢)? 202+ (c+a)? 22+ (a+b)?2 —

(USA MO 2003)

SoLUTION. By normalizing the expression with a + b+ ¢ = 3, we reduce the left
expression to a simpler form

(3+a)? (3 +b)? (3 + ¢)?2
202+ (83—a)? 202+ (3—-0)2 " 22+ (3-c)?’

Notice that

33+a)?  a®+6a+9 ,_Bat6
202+ (3—a)?  a?—2a+3 (a—1)2+2
6
<143¥8_4iia

We conclude that

3+ a)? 1
> 2a2(+ (3ala)z <3 (12+4Za> =8.

cyc cyc

\%

Example 8.3.4. Let a,b, c be non-negative real numbers. Prove that

(b+c—a)®  (c+a=0b)? (a+b—c)? 53
(b+c)2+a?  (c+a)2+b2 (a+b)2+c2 T 5
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(Japan MO 2002)

SoLuTiON. WLOG, we may suppose that a 4- b 4- ¢ = 3. The inequality becomes

(3 —2a)? 3 1 . 3
B ) - <=
Za2—|—(3—-a)2"5 ®22a2—-6a—l—9—5

cyc cyc

Just notice that

5 B 2(a—1)(a — 2)
Z(2a2—6a+9 1) _; 202 — 6a -9

cyc

— —2(a—1)  (a—1)*(2a+1) ~2(a—1) B
_Z( 3 + 5(2a2—6a+9))zz-5——0.

cyce cyce

\%

Example 8.3.5. Let a,b, ¢ be positive real numbers. Prove that

(2a4+b+¢)? | (2b+c+a)® | (2c+a+b)? o 12
da34- (b+¢)® 43+ (c+a)® 4B+ (a+b)3 ~“atbdc

(Pham Kim Hung)

SOLUTION. Suppose that a 4- b+ ¢ = 3. The problem becomes

Z (84 a)?
ps a3 {-(3—a)3 —
Notice that
(84+a)? 4 (a—1)(—4a® —15a427)
4a3 4 (3-a)® 3 4a3 - (3 —a)?

B 2 (a—1)(—2a® ~12a - 9) 2(a—1)
"(“—1)(§+ 4a3 +(3-a)3 )5 3

We conclude that

(3 +a)? 4 2(a—-1)
< R E =4.
pPEN Con e B 4
cyc cyc
\%

Example 8.3.6. Let a,b, c,d be non-negative real numbers. Prove that

a N b | ¢ | d >3\/§_ 1
R+E+d2 E+d2+a? d2+a2+b02 a?4+402+32° 2 JEIbB+ELdE
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SoLuTION. WLOG, assume that a? 4- b2 4 ¢2 - d2 = 1. The problem becomes
b c d 343
S > V8
1-a?2 1-b 1—-¢2 1-d 2
By AM-GM inequality, we get

2 a 3v3 ,
= > a’.
33 1—a2 = 2

3
2a%(1 —a?)(1 —a?) < (—g) = a(l—a?) <

Therefore we conclude that

a 33 3v3
di=a2 (Zag) ==

cye cyc

Equality holds for a = b = ¢,d = 0 up to permutation.
\Y

Example 8.3.7. Let a,b, c be non-negative real numbers. Prove that

o, b c_, 3Vvabc
b+c ct+a a+b 2a+btc) T

(Pham Kim Hung)

SoLuTION. Applying Cauchy-Schwarz inequality, we get
Z a > (a +4- b +4- 6)2
b+ ¢ = 2(ab+-bcHca)’
cyc
We normalize ¢ 4- b+ ¢ =1 and prove that

i+§\,/3ab022,
22 2

1 1
where 2z = ab+bc+-ca < 3 If z < 7 Weare done immediately. Otherwise, by Schur

inequality, we have 9abc > 4z — 1 > 0, so it suffices to prove that

3
—1—+—\/—§\/34:z:—1 > 2,
2z 2
or
3234z ~ 1) > (4z — 1)3,
or

(4z—1)(3z—1)(z> =5z +1)>0;

1
This last inequality is true since 1 <z< % (therefore 22 — 5z + 1 < 0), and the
desired result follows. Equality holds fora =b=cora=1b,c¢=0.

\Y
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Example 8.3.8. Let a, b, ¢ be non-negative real numbers. Prove that

1 1 1 9
) > .
@r b2 (b1 0f  (cta)? = d(ab+bectca)

(Iran TST 1996)

SOLUTION. We normalize ab 4- bc + ca = 1. The inequality becomes

4 Z(a +b)%(a+ )% > 9(a+ b)%(b+ )% (c+ a)?

cyc
or
4(14a®)? 4+ 41+ )2 4+-4(1 + )% > 9(a + b4 ¢ — abc)®.

Denote s = a + b+ ¢. We can rewrite the inequality in terms of s and abc as follows
4(s* — 25 F 1 4 4sabe) > 9(s — abe)?.
If s > 2, we get the conclusion immediately because
LHS > 4(s* — 282 +1) = 95% 4 (s2 — 4)(45% — 1) > 952 > 9(s — abc)? = RHS.
Otherwise, we may assume that s < 2. According to Schur inequality, we get

Za“ 4 acha > Zas(b 4 ¢) = 6abes > (4 —s%)(s2 —1).

cye cye cye

Moreover, 9abe < (a - b 4 ¢)(ab 4- bc +- ca) = s, so we conclude that
LHS — RHS = (s — 4)(45% — 1) +- 34sabc — 9a2b%* > (s% — 4)(4s% — 1) 4 33sabec
2 2 11 2y( 2 3 2y( 2
> (s*—4)(4s —-1)—I——2—(4—s )(s —-1)=§(4—s )(s* —3) > 0.
This ends the proof. Equality holds for a = b = ¢ or (a, b, ¢)=(1, 1, 0).
\%

Example 8.8.9. Let a,b,c,d be positive real numbers. Prove that

abce n bed +
(d4a)(@+b)(d+¢c)  (a+b)(a+c)(ad)

cda dab
+(b +a)(b+ ) (b+d) + (c+a)(c+b)(c+d)

>1
-2

(Nguyen Van Thach)
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1 1 1 1 . .
SoLuTION. Denote z = —,y = PES t = —, the inequality becomes
a ¢

d
xS y3
i@ ) @t )w )
23 3 1

- - 25
GraGTGET) | Eratriits) 2
WLOG, assume that x 4+ y + z + t =4. By AM-GM inequality, we have

(z+y)(z+2)(z+t) < (:c + y—4§—4—t)3 = (:c - ; x)s = 58,?(1 +2)%.

So we only need to prove that

z3 y3 P t3 4
+ + 3+ 72 o5
(z42)2 " (y+2)3  (2+2)%  (t+2)3 T 27
But, it is easy to check that
z3 22—1 _ 2(z—1)*(—2% 4 6z + 4)

>0

(z+2)° 271 27(z + 2)2

because 0 < z < 4. We can conclude that
Z z3 > 22—1 4
Lo(e+23 =L 21 2T
This ends the proof. Equality holds for e =y =z2=t=1ora=b=c=d.

\Y%

8.4 Symmetric separation

Review example 8.3.4 in the normalization section.
How does one final the following inequality, which solves the problem earl?
1 <l _2(a~1) 9
202 ~6a+975 25

In this part, we will explain how to use ”symmetric separation”, an approach that

has been used previously.

This approach can help us solve many problems which are represented in the form

f(z1) 4 f(z2) 4 ... + f(z,) 2 0.

[ndeed, to prove such inequalities, we will find functions g(z) such that f(z) > g(z)

and
g9(z1) 4 g(z2) + ... + g(z,) > 0.

Let’s consider the following example
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Example 8.4.1. Let a,b, ¢ be positive real numbers such that abc = 1. Prove that

1 1 1
- : >1.
3@+ (=12 " F (=12 3@ f(c=1)2 =

(Le Huu Dien Khue)

SoLUTION. We want to find a real constant k such that

[y

1
> -t klna.
3 F (a—1)2 =3 ke

[f there exists such a valid number k, we can conclude (notice Ina + Inb+ Inc = 0)

1
SR S— [y 1 =1.
%3&24-(&—1)2 2 14 k(z na)

cye

Denote

1
/(=) = 322 + (z —1)2 ~klne = 3

Notice that @ = b = ¢ = 1 makes up one case of equality. We predict that such a

number k will bring about f’(1) = 0. Since

, -8z +2 k
f (I) = p o2 T T
B2+ (1)) =

-2
we infer k — 5 In this case,

B —8x + 2 L2 2z-1)(l6z* — 1)
C (Bz2+(z—1)2)% 3z 32(3z2+ (z—1)2)%

f'(=)

Unfortunately, the equation f’(z) = 0 has more than one root, so the inequality

f(z) =2 0 is wrong (in fact, if we let z — 0 then f(z) — —oc0). However, from the

\

1
derivative of f(z), we can at least obtain that f(z) > f(1) =0 for all z € [5, —I-oo/.

1
So if all a, b, ¢ belong to [5, +oo) , we have are

1 1 2
> — -] =1.
§3a2—|—(a—1)2 —Z(s 3 ““)

cyce

1 1
What if some numbers among a, b, ¢ are smaller than E? Suppose that a < 3 then

3a? 4 (a— 1)? < 1 and the problem becomes obvious

1 1
E > > 1.
p” 3624 (a—1)2 = 3a?2+ (a—1)2 —
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We are done. Equality holds fora =b=c=1.
\Y
Making up the estimation

1 1
> -%k
32 F (a—1)2 = 39|~l”lna

is a technique called ”symmetric separation”. If it’s hard to prove ) f(z:) = O,
cye

we can separate this sum into smaller components f(z;) > g¢(z;) then prove that
3" g(z;) > 0. Also, g(z) should be guessed from the data given in the hypothesis: if

cyc
the hypothesis is z,z3...z, = 1, we may predict g(z) = klnz (k is a constant); if the

hypothesis is 21 + 23 +- ... + zn = n, we may predict g(z) = k(xz—1); if the hypothesis
is 22 4- 22 + ... - 22 = n, we may predict g(z) = k(z? — 1), etc. Notice that these
predictions must also depend on the case of equality (for example, above predictions

of g(x) are based on the case 21 = z9 = ... =z, = 1).

How do we figure out a valid number k7 Suppose that f(z) has derivative and
you predict that case z; = z9 = ... = 2, = 1 makes up the equality then, is given by

/(1) =o.

Although in some situations, the inequality f(z) > g(z) doesn’t hold for all z in
the required range, it can hold for a large range of z and the work left may easy, as

A . 1
in example 8.4.1 when we examined case a < 7

Example 8.4.2. Let a,b, ¢ be positive real numbers such that abc = 1. Prove that

1 4 1 4 1 <3
a?—a+41 b2—-b4+1 c2—c+1~ "

(Vu Dinh Quy)

SOLUTION. First, we will prove that

1
=—— 4lnz-1> .
f(z) xz_x_l_l—lln:z: 1>0Vze (0,1.8]
Indeed, we have
Fz) = —2z+1 __1__(:1:—1)(:1:3—:1:2—1)
(22 —z4+1)2 "z (22—z—1)2

3

The equation z* = z2 + 1 has exactly one real root in (0, 2], so it’s easy to infer that

max f(z) = max{f(1), f(1.8)} = 0.

0<r<1.8
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Therefore we are done if all a,b, ¢ are smaller than 1.8. Otherwise, we suppose that
a > 1.8. If a > 2 then we have

> L < - + . + ! <iyiilos
R G RN R

So it’s enough to consider the case 1.8 < a < 2. WLOG, suppose that b > ¢. Because

1
a < 2, we must have b > E If @ > 1.9 then we can conclude by

Z 1 < 1 n 1 +4<3
2 01 = 2 _ _ 1_ 1 Y
Soa a+1~1.92—-19+41 5 7§+1 3
1
Ifa < 1.9 then b > nd we also conclude b
= = Ve eV y
Z 1 < 1 n 1 4 4<3
2 _ =782 - i i 1 173
‘oa a+1 1.8 —-1841 15 m41 3

The proof is finished. Equality holds fora =b=c¢=1.

Comment. Taking into account example 2.1.9 we can solve this problem differently.

Notice that .

a 1
e g

So
S = S et St st S e
poll’ 2-a41 a2—a+1_ 2—a—ll 2+a—|1
B b L > weconclude ¥ — <3
* —_— — < 3.
ecause Y()§Ca24—a+1 .w conclu ecyc Z_arls
\%

Example 8.4.3. Suppose that a,b,c,d, e, f are siz positive real numbers satisfying
abedef = 1. Prove the following inequality

2a+1 n 2b+41 4 2¢c+1 " 2d+1 " 2e+1 2f+1
a24+a41 b24b+1  24ct+1l d24d+1  e4+e+l fEHf41T

(Pham Kim Hung)

SoLuTION. Consider the following function with z > 0

142z Inz

~1.
142422 + 3

f(z) =
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We have certainly

fl(x)__2x2_2x-|-1 _-1_: (m_l)(x3_3x2_61‘_1)
= (] 4z +:z:2)2 3x 33;(]_ 1z 4 232)2

Notice that the equation z3 = 3z% 4- 6z + 1 has exactly one real root zo in (1,+4-00).

Since 4 < zg < 12 we have

max f(z) =max{f(1), f(12)} = 0.

0<z<12

It all a,b,c,d,e, f are smaller than 12 then we conclude that

+ 2 Ina
Zl+a—laa2 —Z(H'T) =6

cyc cyc

Otherwise, suppose that a > 12. Notice that
70+ z+ 22) ~6(1422) =722 -5z +1 > 0Vz € R,

so we deduce

14 2a < 14212 . 5.7
l4a4+a?2 ~ 14124122 6

cye

We are done. Equality holds fora =b=c=d=e¢= f = 1.

< 6.

\%

Example 8.4.4. Suppose that a,b,c,d are positive real numbers satisfying abed = 1.
Prove that

l4+a 14+b 14c 14d
N - <4.
T+a? 138 " 1+& "1+~
(Vasile Cirtoaje)

SoLuTION. Consider the following function with z > 0

f(z) = 1+z Inz

vzt 7!
We obtain .
(z—1)(z® ~ 22 -3z~ 1)
22(1 4 22)?

= 2% - 3z + 1 has exactly one real root zg and 4 > z¢ > 1 it’s

f'(z) =

Since the equation z3

easy to get
max, f(z) = max{f(1), f(4)} = 0.

0<z
If all a,b, c,d are smaller than 4 then we are done because
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Now suppose that a > 4. Since 21(1 +2%) —17(1 +z) = 2122 — 17z 4-4 > 0, it follows
that

Zl-l-a> 1+4 3-21

- =4.
ps 14+a2 — 1442 | 17

The proof is finished. Equality holds fora =b=c=d =1.
\Y%

Example 8.4.5. Suppose that a,b,c,d, e, f are siz positive real numbers satisfying

abedef = 1. Prove the following inequality

a—1 + b-—1 i c—1 r d—1 " e—1 + f—1 <0
a’+a+1 b24b+1 +cd1 d24d+1  eHe+l f24f417 7

(Pham Kim Hung)

SoLuTIoN. Consider the following function with z > 0

-1 ln:z:
:2:2—I z+1 3

f(z) =

Notice that
(z — 1)(~z% — 622 —~ 3z + 1)

3z(z2 -z 4 1)2

fi(z) =

1
The equation z® 4- 622 4- 3z = 1 has exactly one real root zo and clearly, zo > z

Therefore

max, f(a)_max{f(l)f( )=

1>:r>

1
If all a,b,¢,d, e, f are greater than —, we are done because

11
a—1 Ina
— < — =0.
2 TrariS 3
cyc cyc
1 . oz ~1 has the derivati
Now suppose that a < i Because the function g(z) = pe B | as the derivative

—z2 4+ 2242

1
e TEET 2 <
9'(z) (xg_Ix_’_l)z,wemferg(a) g(ll) and

ssss=0(1++9)
and therefore we conclude that
1
ola) +9(5) +9() +o(d) +.9(2) +1) £ 9 (7 ) +59 (14 V) <0

\%
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Example 8.4.6. Suppose that a,b,¢,d, e, f, g are positive real numbers such that a +
b4-c+d4ed f+g=7. Prove that

(@@ —a+1)(B® —b41)( —c+1)(d?—d+1) (e —e+1)(f2— f+1)(g° —g+1) > L.
(Pham Kim Hung)

SoLUTION. The inequality is equivalent to
Y In(a*—a+1) 20
cyc

Consider the function f(z) = In(z? — z 4- 1) — z + 1. We have

z~1)(2—=z)
224241

f/ (:ZI) — (
It’s easy to get that

min _ f(z) =min{f(1), f(2.75)} = 0.

0<x<2.75
If all a,b,c,d, e, f, g are smaller than 2.75 then we are done

Y In@®-a+1)>> (1-a)=0.

cye cyc

3
Otherwise, suppose that a > 2.75. Since 22 —z 41> 1 Vz € R,

> In(@*—a+1)21n(2.75° —=2.754-1) +6-In G) > 0.

cyc

The proof is finished. Equality holds fora =b=c=d=e=f=¢g=1.
\Y%

Example 8.4.7. Let a,b,c,d be positive real numbers such that a + b+ c+d = 4.
Prove that

1 1 1 1

s L o> a2ap? 2

a2+b2—l +d2_ +b% + 2+ d°.

(Pham Kim Hung)

SorLuTioN. Consider the following function of positive variable z

f(z) = ——-:z: + 4z — 4.
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We clearly have

2z -1)(z*—2® -z —1)
= .

’ —2
f(=z) 3 z + -

The equation f'(z) = 0 has exactly two positive real roots. One root is 1 and one

root is a number greater than 1.

max f(z) = max{f(1); f(24)} =0.

0<z<24
If a,b, c,d are smaller than 2.4, we get the desired result since
1
S & -Ye=Yr@zo
cyc cyc cyc
Otherwise, we may assume that a > 24> b>c>d. Since b+ c+d < 1.6, we get

1 1 1 27

S T I
2+c2+al2—(b+c+al)2>

10.
b

(i). The first case. a < 3. We have the desired result since
b+ R +d? <a’+(b+c+d)P? =
=a?+ (4 -a)? <32 +1%2 =10,

since 3 > a > 1.
(ii). The second case. If a > 3. Similarly, we get

1 1 1 27

o> > 21> 16> a? + b+ F + dP
Rrat @ breraz =707t F

Therefore the inequality is proved in every case. Equality holds fora =b=c=d =1.

\%






Chapter 9

Problems arld Solutions

After reading the previous 8 chapters, to discover a higher level of inequalities. In
this chapter, there are 100 collected inequalities from recent mathematics coutests
and creations of some authors trom all over the world. I hope they will depict a
colorful picture so that you can appreciate their beauty. Perhaps, solving thoroughly
100 problems will cost you a remarkable amount of time, so, just see them as an
interesting game of imagination, play with them rather than ”work with them”. 1f
you can solve 70 problems, you are really good. If you can solve 90 problems, you are
absolutely brilliant. If you can solve all, you must be a genius of inequalities. Take

your time.

143
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Problem 1. Let a,b, ¢ be non-negative real numbers such that a + b+ ¢ = 3. Prove

the following inequality
(a® — ab+ b?)(b® —be+ 2)(? — ca +a?) < 12.
(Pham Kim Hung)
SoLUTION. WLOG, assume that a > b > ¢. Certainly, we have
B —be+ P < b
a? —ac+ c? < 2.
It suffices to prove that

M = a?b?(a® — ab + b?) < 12.

Denote « = a_;lz >0and s= a ;_ b < % Rewrite M into the form

M = (s? — 22)%(s? + 322).

Applying AM-GM inequality, we obtain

3
2(32 —z?). 2(32 —2%)- (s +32%) < (%ﬁ) <27 = 2M <271 = M <12

Equality holds for a = 2,b =1, ¢ = 0 up to permutation.
Comment. By the same approach, we can prove the following results

% Let a,b, ¢ be non-negative real numbers. Prove that

(a) a? + b2 + b >0
b2—bc+c?  2—ca+a?  aZ—ab+4b2 T
a b ¢
b + + 22
(®) V2 —bec+c2 V2 —ca+a? Va2 —ab+ b2 T
(c) 1 + 1 + 1 > 6
b2—bc+c?2  2—ca+a?  a?—ab+b?2 T ab+bctca’

% Let a,b, ¢ be non-negative real numbers and a® + b*> + & = 2. Prove that
8(a® —ab+ b?) (B2 — be+ ) (2 —ca+a?) < 1.

To prove them, we carry out the same procedure. Suppose that @ > b > ¢ then
a? —ac+ c¢? < a? and b — be+ ¢? < b2, The problems are changed to simpler forms

in two variables a and b only; the remaining work is easy.

\%
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Problem 2. Suppose that a,b, ¢ are positive real numbers. Prove that

l+1+l 1 + 1 + 1 S ¢]
a b ¢ 14a 146 14c¢c/ = 1+4abc

(Walther Janous)

SoLUTION. By Rearrangement inequality,

1 1 1 1 1 1
>
ai+a) Th0+0) T+ bl+9 it al+d)

Hence the inequality will be proved if these relations are fulfilled

1 3 1 3
> ; > .
;y;b(1+c)‘"1+abc ' Za(1+c)"1+abc

cyce

We choose to prove the first inequality (the second one can be proved similarly). Let

= -—y, b= —:i, ¢ = ~Z Therefore the inequality is rewritten into the form
x y z

a

1 3 Y 3k
g > > .
kz K’z — 1+4k3 ®Zz+kx_1+k3
cyc_+_ cyc
Yy y

According to Cauchy-Schwarz inequality, we have

Y (z+y + 2)? 3
» > > .
24+ ke = (k+1)(ey+yz+2z) " k+1

cyc
So it suffices to prove that

3 3k

> E—1)2(k+1)>0,
rri 2T & k-Dk+1) 2

which is obvious. The equality holds for c =y=2,k=1 & a=b=c=1.
\Y

Problem 3. Let a,b, ¢ be positive real numbers salisfying a® +b% + ¢? = 3. Prove that

a b c
a2+2b+3+b2+2c+3+c2+2a+3

<1
=73

(Pham Kim Hung)

SOLUTION. We certainly have a2 +1 > 2@, b? +1 > 2b, <® + 1 > 2¢, therefore

1a - \' ‘a
E a®+'2b+.3 = gg Za+6+1)

LYC
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It remains to prove that
a b+1
— <1 —_—>2.
e rist e Logpi2
cyc cyc
Notice that a® + b% + ¢ = 3, so

Z(b+1)(a+b+1 -—3+3Za+Zab+Za a+b+c+3)2

cyc cyc cyc cyc

According to Cauchy-Schwarz inequality, we deduce that

> b+1 (a+b+c+3)? _
—~a+b+17 (b+1)a+b+ 1) +(c+)b+et1)+(a+1)(c+a+1)

The proof is finished. Equality holds for a = b =c = 1.

\Y

Problem 4. Let zy,x, ..., Zn be positive real numbers and z1z4...2, = 1. Prove that

2 N 2 - 2
“ 14z 1+4+ze = 14z,

(Pham Kim Hung)

z1+xo+ ... +2p 2

2 _ 2$i
14 x; - 1'+'$i,

Yot ¥

cyc cyc

SoLUTION. Because 2 — the problem can be rewritten to

According to AM-GM inequality, we conclude that

_2n+Z‘”=+Z 2x; =_2n+Z(:c;+1 lfx)"‘zml_l

cyc cyc cyc
> Fa g e ool g e =0
cyc cyc cyc cyc
This ends the proof. Equality holds for 21 =29 = ... =z, = 1.
v

Problem 5. Prove that for all positive real numbers a,b,c € [1,2], we have

1 1 [ it b e
b
(o + -H-C)< 3+ ) 6(b+|c+:c.+:a+u++fb)'

(Tran Nem Dung, Viet Nara TST 2006)
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SOLUTION. Instead of the condition a,b, ¢ € [1,2], we will prove this inequality with

a stronger condition that a,b, ¢ are the side lengths of a triangle. Using the identities

(o) (Z3) -T2 o(Si) - Sty

cyc cyc cyc cyc

the inequality is equivalent to
Sa(b—¢)? 4+ Sp(c—a)? + Se(a—b)2>0

where Sg, Sy, S can be defined as

1 s gt ___ 3 e _1_ 3
&:E?'@+w@+@’&‘7£ @+®@+@’&_ﬁb (c+a)(c+b)

WLOG, suppose that a > b > ¢, hence S; > S, > S.. Notice that
1/1 1 3 1 1
_1f1 1y >0
S+ S a(b+c) b+c(a+b+a+c)‘

- 1{_1> 3 a ;0
b ¢ " b+cl\a+db a+c/)’
Because a < b + ¢, we have

3 (b+c b+c)_ 3 3

RHS <

“b4ec 2b+c+2c+b _2b+c+2c+b'

By Cauchy-Schwarz inequality, we get

1 1 3 + 3 —-.]; .];+g____g +l .];+.g_ 9 )>
bt e\ et oexn) T3\b e T ern) T3 et T e/ 2

We conclude Sy + S¢ > 0, which implies that S; > Sp > 0 and

Sa(b— )% + Sp(c—a)® + Sc(a—b)? > (Sp + Se)(a—b)2 > 0.
Equality holds for a = b = ¢ or a = 2b = 2¢ up to permutation.
\Y%

Problem 6. Let a,b, ¢ be positive real numbers such that a + b+ ¢ = 3. Prove that

24a 24b 2+4c¢
2
2355 2ye 21 a

a® +b* +

(Pham Kim Hung)
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SOLUTION. (Cauchy reverse) By AM-GM, we deduce that

24a 2+a Z 2+a) 3Vabc
24b L 22+b)—2 2

cyc
So it’s enough to prove that

3 2
ZGQ + 3\/2abc > (a+b2+ c)

cyc

= Za2+3(a+b+c)\/3abc222ab.

cyc cyce
Let ¢ = ¥a,y = Vb and z = ¢c. By AM-GM inequality and the sixth Schur
inequality, we have the desired result immediately

Zx6+xy22x3 > sz(y+z) =ny(:v4+y4) > 2Zx3y3

cyc cyc cyc cyce cyc

The equality holds fora =b=c=1.
\Y%

Problem 7. Let z,y, 2z be non-negative real numbers with sum 3. Prove that

Vi+ \/1+2zx \[1+2 2 V3.

(Phan Thanh Viet)

SOLUTION. According to Cauchy-Schwarz inequality, we deduce that

D R Dhvery = e
e V1+2yz /2 [a? 4 222y

(z+y +2)?
_\/_ Va2 +222yz 4+ /- VY2 + 29222 + /2 - /22 + 2222y
(z+y+2)*

\f:v+y+z) (22 +y2 + 22 + 2zyz(z + y + 2))
So it’s enough to prove that

() 22(57) (%)
o (Zx)32 (Zx) (sz) + 6zy2 (Zx) & 3Y z(y-2)* >0,

cyc cyc cyc cyc
which is obvious. The proof is finished and equality holds for a = b = ¢ = 1 and
a = 3,b= ¢ =0 up to permutation.

\%
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Problem 8. Let a1,as,,...,a, be positive real numbers and aias...a, = 1. Prove that

\/1+a§+\/1+a§+...+\/1+a,%§ V2(a1 + ag + ... + an).

(Gabriel Dospinescu)
SOLUTION. From the obvious inequality (v/Z — 1) > 0, we see that

14 22 1+ 22

2

<(z-vz+1)? = +vVz<l+a.

According to this result, we have of course
n n n n
Z\/1+a? < \/EZai+\/§ (n— Z\/a_,) <Vv2 (Zai)
i=1 i=1 i=1 i=1

n
because AM-GM inequality yields that ) ,/a; > n. The conclusion follows and

i=1
equality holds if a; = a3 = ... = a, = 1.

Comment. We can solve this problem by using symmetric separation. Indeed, con-

sider the following function

f(:v)=\/1_+_:v?—\/§m+(\/§—%)lnx.

Since

fl(z) = _1122—\/5+(\/§—%)%
(:v—l)‘(2:v3'+:v—1—2:v2 2(1+x2))

x (\/5302 + V1 4+ z?) V2(1 + z2)

Notice that 1 + 222,/2(1 + 22) > 1 + 22%(1 + ) > 22° + = so we infer that f'(z) =
0 < z = 1. It’s then easy to deduce that max f(z) = f(1) = 0. Therefore

iz:;\/l+a?§\/§iz:;ai— (\/E—%)glnai:\/fgai,

\%

Problem 9. Let a,b,c, k be positive real numbers. Prove that

a+kb b4+kc c+ka _a b
< 212
etk Thika Terb =070

[}
+ -
a

(Nguyen Viet Anh)
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SoLUTION. We denote

1+k-¢ 14 k-2 1+k-£
= —— = < Z::_—a.
X 1+k Y 1+k 1+k

According to Holder inequality, we get
k
I1 (1+—bﬁ) > (1+ k),
cyc
or equivalently XY Z > 1. Now rewrite the inequality into the following form

a c+ka c(a —b)
Z(E—C—}-kb) Zb(c+kb) Z b kb—

cyc cyc

Z
> A L 2
T A AP

Z(k+1(X—1) X Y

which is true accordmg to AM-GM inequality because
X X Z XZ
3% Z( )>3Z’/Y2 3;1,

Equality holds for X =Y = Z =1 or equivalent toa =b=c.
\Y

Problem 10. Let a,b,c be positive real numbers such that abc = 1. Prove that

1 1 1 1
(a+1)(a+2) + (b+1)(b+2) + (c+1)(c+2) 273

(Pham Kim Hung)

SOLUTION. By hypothesis abc = 1, so there are three positive real numbers z, y, z for

which a = b = 7z ,C= Zg’ The inequality becomes

z4
Z (2?2 + yz)(22% + y2) ~

cyc

1
2.

According to Cauchy-Schwarz inequality, we deduce that

LHS > (@2 4 42 + 22)?
T (22 4+ yz)(222 + y2) + (y2 + 22) (292 + 22) + (22 + z2y) (222 + zy)’

It remains to prove that

2* + 142 +2%)? 2 ) (2® +yz)(22 +y2)

cyc
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o 3Zx2y2232x2yz < Zzz(y—z)220,

cyc cyc cyc

which is obvious. Equality holds forz =y =z20ra=b=c=1.
\Y4

Problem 11. Let a,b,c,d be non-negative real numbers such that a +b-Fc+d = 4.
Prove that
a2+ b2+ c?+d*—-4>4(a—1)(b—1)(c—1)(d—1).

(Pham Kim Hung)
SoLuTioN. Applying AM-GM inequality, we get

A4+ d?—4=(a-1)2+(b-1) 4+ (c-1)2+(d-1)?
> 4/la=1)(b— 1)(c - 1)(d - 1)},

[t suffices to consider the inequality in the case ¢ > b > 1 > ¢ > d (in order to have
(a—1)(b—1)(c—1)(d—1) >0). Sincea+b<4and ¢,d <1,

(1-o(1-d)<1;

(a+b-2)2<1;

S| -

(e—1)(b-1) <

Therefore we reach the desired result since

Vi@=DE-Dle=D@=1]> (a—1)(b— 1)(c—1)(d 1)
Equality holds fora =b=c=d =1, a =b=2,¢=d = 0 and any permutations.
\%

Problem 12. Let z,v, 2z be distinct real numbers. Prove that
22 Y2 22
+ + > 1
Cn R O DR P

(Le Huu Dien Khue)

SoLuTIioN. We have

209" (-5) - 0-97(-3) -2

cyc

2 2
z z T
:Z(l_z_z+z) _(£+2+__£____) -
pA y Y Y b4 T T Y zZ

cyc
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2
=3+2ZZ—Z+Z§-§-—4Z§+4Z%-2Z%—2 2%

cyc cyc cyc cyc cyc cyc
2 2
S AT P IR ED W ED B
cyc y cyc cyc y cyc cyc cyc y
DREEDRIEI L
cyc z cyc z cycy
2
(Frieiy) =0

We conclude that

S (-2 (-2 2 0-2'(-2) -9’

=Y P (z—a(z2-9)’ 2 (z- )’ (v - 2)* (e — 2)*>

cyc

2 2 2
z Yy z > 1,

A PR sl P PR

as desired. Equality holds for all triples (z, y, 2) such that % + g + % = 3.

\%
Problem 13. Let a,b,c,d be non-negative real numbers with sum 3. Prove that
ab(b + ¢) + be(c+ d) + cd(d + a) + da(a + b) < 4.
(Pham Kim Hung)
SoLuTioN. WLOG, we may assume that b +d < a + ¢. We have

ab(b+ ¢) + be(c + d) + cd(d + a) + da(a + b)=

= (a+ c)(be + da) + (b + d)(ab + cd)=

= (a+¢) ((a +c)(b+d) — (ab+ cd)) + (b + d)(ab + cd)=
=(a+)?(b+d)+(ab+cd)(b+d—a—c)< (a+ )2 (b+d).

Finally, AM-GM inequality shows that
2(a+c)(b+d)=(a+c)a+c)(2b+2d) <8 = (a+c)(b+d)? <4
Equality holds for a = 1,b = 2, ¢ = d = 0 and permutations.

\%
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Problem 14. Let aq,aq,...,a, be arbitrary real numbers. Prove that

Z la; + a,) >nz:|al

1.7 —'1

(Iran TST 2006)

SOLUTION. Separating the sequence (a,as,...,a,) into two sub-sequences of non-

negative and elements
{CL]_, a2, ceey an} — {b]_, b2, ooy b—r} U {_C]_, ==C2,y eeny '—Cs},

withn=r+s, b >0Vie {1,2,..,7}, ¢, >0Vj €{1,2,...,s}.

Let R= Z b; and S = Z ¢;. The inequality becomes

=1 i=

QZZM -—c_7|+2r2b +232cj >n (zrzbz‘-i-zs:cj)
i=1 j=1

i=1j=1 =1

& 2) > |bi—¢| = (s—r)(R-S).

=1 j=1

WLOG, suppose that s > r. Clearly, we only need to consider the case R > S. Hence

ZZlb-—cj|>Z (sb; = S)=sR—rS.

=1 j=1

We will prove that
2(sR—rS)2(s—r)(R-S) & S(s—r)+r(R—-S)+sR—rS >0,

which is obviously true because s > r and R > S. Equality holds if and only if
la1| = |az] = ... = |an| and in the set {a1,a9,...,an}, the number of the negative

terms is equal to the number of the non-negative terms.
\Y%

Problem 15. Let a,b, c be non-negative real numbers. Prove that

3(a+b+c)22(\/a2 Fbe+ \/b2+ca+\/c2+ab).

(Pham Kim Hung)
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SorLuTioN. WLOG, we may assume that a > b > ¢. Hence

Vb2 + ca+ V2 +ab < /262 + ) + 2a(b + ¢).

We need to prove that
2/2(b2 + ¢2) + 2a(b + ¢) + 2v/a? + be < 3(a + b +¢).

Let s = %(b + ¢). Squaring both hand sides, we obtain an equivalent inequality
8(b% + & + 2as) < 9(a + 2s5)% +2(a® + be) — 12(a + 2s)V a2 + be

& (a—28)? + 20be > 12(a + 25) (\/&2 ¥ be— a) .
Clearly,

1/a2+bc_a—__£___<2€
Ca+VaZ+be” 2a

So it suffices to prove that
6(a + 2s)be
a
12(a — s)be

(a —2s)2 4 20bc >

> 0.

& (a—2s)%+2bc+
which is obvious because a > s. Equality holds for a = b, ¢ = 0 or permutations.

\%

Problem 16. Suppose that a,b,c are three non-negative real numbers. Prove that
1 + 1 " 1 S 10
a2+ B+ A+a?2 T (a+b+e)?

(Vasile Cirtoaje, Nguyen Viet Anh)

SOLUTION. WLOG, assume that ¢ = min(a, b, ¢), then

2
B2 < (b+§) =22,

2
a2+c2§(a+§) =42,

2, 32 c\? c\?2 2, .2
a“+b S(a+§) +(b+—2-) =z° +y°.

We deduce that

1 1 3 1 1 1 1
ILHS> [ —4+ =} = — )} >
- (z2+y2) 4+(:c2+y2) 4+x2+y2—

3
7% 1,1 6 . (a+y)?
> + > >
~ (z+y)? 2xy+:c2+y2_(:v-l-y)2+2(:v4+y4)_
10

 (z+y)?
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. 1 1
We used Holder: (z + y)(z + ) (;2— + F) > 8. Equality holds for ¢ = b,¢ = 0 or

permutations.
Comment. This solution can help us create a more general problem

% Let a),as,...,an be non-negative real numbers. Find the maximum k such that
the following inequality holds
1 1 1 k

+...+ > .
a3 +ai+..+a2 a?+ai+..+a2 a?+a+..+a2_; T (a;+as+ ...+ an)?

WLOG, suppose that a; > ag > ... 2 a,. Denote a = a; + —;- > a;and b =ay+

=3

1 n n n
5 3 a;. Clearly, a2 + Y a2 < a?,b% + 3 a? < b? and for all k € {3,4,...,n}
i=3 j=3 j=3

n
ol +aj+ Y al<a’+bn
J=1,j#k
Case a3 = a4 = ... = a,, = 0 makes up the equality in all above inequalities. Therefore
it’s sufficient to examine the following expression for positive real numbers a,b with
a+b=1
n—2 1 1

e tatE

Denote z = a? + b* (z > -;—) then 2ab = 1 — z, therefore

n—2 4z

A=t g =@
. 1
Notice that = > 5 50
, -n+2 4(1+:z:)>
= 0, Vo < 14.
f'(=) 2 taogp 20 WS

Hence if n € {3,4,5, ..., 14}, we can conclude that
fz) > f (%) =2n+4 =k=2n+4.

If n > 15, the function 422(1 + z) — (n — 2)(1 — z)3 = 0 has exactly one real roots
greater than -;— (because f () < 0). Suppose that xo is this root, then k is exactly

. . n—2 420
k= %221 f(x) = f(xo) = Zo + (1 — 10)2

We can prove by a similar method the next problem.
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* Let a,b, c,d be positive real numbers. Prove that

1 + 1 . 1 + 1 + 1 + 1 243
ad+b3 a3+ 3 a3+ d3

> .
B+ B+dd A+d® T 2a+b+c+d)?
\Y

Problem 17. Let a,b,c,d be positive real numbers such that abed = 1. Prove that
(1+a?)(1 +®) 1+ )1 +d?) > (a+b+c+d)>
(Pham Kim Hung)

SOLUTION. Because abed = 1, there are two numbers between a,b,c,d both not
smaller than 1 or not bigger than 1. WLOG, suppose that they are b and d, then
(b —1)(d — 1) > 0. Applying Cauchy-Schwarz inequality, we get
(14+a2) (1 +?) (1 + A1 +d?) = (1 +a® + % + a2?)(? + 1 + d? + 2d?)
> (c+a+bd+1)?> (a+b+c+d)>

Equality holds fora =b=c=d =1.
\Y%

Problem 18. Let a,b,c be positive real numbers such that a + b+ ¢ = 1. Prove that

ab be ca 1

+ + < .
Vab+bec Vbc+eca ea+ab T /2

(Chinese MO 2006)

SoLUTION. The above inequality is equivalent to

b a+b 1
Z:a.\/a+ Z \/(a+c(a+b =~ V2

cyc cyc

Using weighted Jensen inequality for the concave function f(z) = \/z, we obtain

a+b 4a2b 2a2p
Z \/(a+c(a+b)2—\/§:(a+b)(a+c

cyc

It remains to prove that

a?b 1
Z(a+b(a+c) 4

cyc

& 4) a’bb+o)<(a+b+c)[[(a+b)

cyc cyc
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& 2225121)2 < 203(b+c),

cyc cyc

which is obvious. Equality holds fora =b=c¢ = %

' \%

Problem 19. Let z,y, z be non-negative real numbers such that x4+ y+z = 1. Find

the mazimum of
T—y y—2z z—z

+ +
VZty ¥tz Jitz

(Pham Kim Hung)

SOLUTION. First we consider the problem in the case min(z, v, z) = 0. WLOG, sup-
pose that z = 0, then z + y = 1 and therefore

%C: = ‘”_H VI~ Ve=z—y+I—Va=u(v—1),

in which v = /z — \/y,v = /r+ /y and u? + v% = 2.
Denote u?(v —1)2 = (2 —v?)(v ~ 1)® = f(v) We have f'(v) = 2(v — 1)(2 + v — 20?)

and it’s easy to infer that

max

1<v<V2

L1+ VITY T —1TVIT
BEA R R a—

So if min(z, y, 2z) = 0 then the maximum we are looking for is

71 —17/17

k= 32

This result also shows that if min(z,y, z) = 0 then

T—y y—z z—x
+ <kJVzt+y+z (>
vty \/y+z Vz+z © Y ()

Now we will prove (x) for all non-negative real numbers z, y, z (we dismiss the condi-
tion z + y + z = 1 because the inequality is homogeneous). Denote ¢ = /z +y, b=
Vz + 2z, a = /y + z. The problem can be rewritten in the form

b2—-a?2 -0  a?-c? k
+ + < —=-Va2+b2+ e
c a b~ V2
\/a2+l>2+c2 (%)

& (a—b)(b—c)(c—a) ((—115+512+Cl—a

SI
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WLOG, suppose that ¢ = max(a,b,c). If a > b, then the conclusion follows immedi-
ately. Otherwise, suppose that b > a. Because ¢ < b2+ a?, there exists an unique real
number t < a for which (a —t), (b—1t), (c—t) are side lengths of a right triangle (that
means (a —t)2 + (b—t)%2 = (¢—t)?). Clearly, if we replace a,b,c with a —t,b—t,c—t,
the left-hand expression of () is increased but the right-hand expression of (#«) is
decreased, so we conclude that it is enough te consider (**) in the case when q,b,c
are three side lengths of a right triangle. That means a® + b2 = ¢2 or z = 0. But the

case z = 0 has been proved above, so we are done.
\Y%

Problem 20. Let z,y,z be three real numbers in [—1,1] such that z + y + z = 0.
Prove that

Vitz+ 2?2 +V/1+y+22+/1+ 2422 >3
(Phan Thanh Nam)

SoLuTiON. First, we will prove that if ab > 0 then

Vita+V1i+b6>1+V1+a+b.

Indeed, after squaring, the inequality becomes

24+a+b+2y/1+a)1+b)>2+a+b+2V1+a+b

& (I1+a)1+4b)214+a+b & ab>0,

and we are done. Notice that between z 4 y2,y + 22, 2+ 22, at least two numbers have
the same sign. WLOG, we may assume that (z + ¥2)(y + 22) > 0, then the above

result shows that:

Vitz+ 22+ /14+y+ 224+ 1+ 2+ 22

>1+V1+z+2+y+224+V/142+22
=1+\/(m)2+y2+\/(\/u—z)2+x2
21+¢(m+\/m)2+(x+y)2
=1+\/(m+\/1_+7)2+z2.

It remains to prove that

2
(\/l—z+z2+\/l +z) +22>4
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& 222421+ 2322 & 22(2-2)(2+1) >0,
which is clearly true because |z| < 1. Equality holds for z =y = 2z = 0.
Comment. By a similar approach, we can prove the same result with four numbers

* Let z,y,2,t be real numbers in [—1,1] such that + y + z +t = 0. Prove that

Vitz+ 2+ V1i4+y+ 2+ V14242 +V/1+t+22 >4
\%

Problem 21. Suppose that a,b, ¢ are three non-negative real numbers satisfying ab-+
bc + ca = 1. Prove the inequality

1 n 1 n 1
a+b b+4c c+H+a

v

S
5
(Berkeley Mathematics Circle)

SOLUTION. We denote = = a + b + ¢ and z = abe. The inequality becomes
22(a+ b)(a+¢c) > 5H(a+ b) & 6 +22a2 > 5(a + b+ c— abc)
cyc cyc cyc

& 222 -5 4245220 & (z—2)(2z—1)+52>0.

If z > 2, we are done. Otherwise, suppose that z < 2. Because
(a+b—c)(b+c—a)(c+a—b)=(z—2a)(z—2b)(z— 2¢) < abe.

we obtain 9z > 4z — 2. So it's enough to prove that
do — x?

9
& (z—2)[-52% +82—9] >0

(—2)(2z—1)+5 >0 (z—2)[182-9—-52(2+z)] >0

which holds because z < 2. Equality holds for a = b = 1, ¢ = 0 or permutations.
Comment. We have a nice and similar result as follows

* Let a,b, c be non-negative real numbers and ab + bc+ ca = 1. Prove that

1 1 1 1
+ >
at+b b+ec c+a a+b+c™

PROOF. If a+b+ ¢ < 2 then this problem deduced from the above result. Now suppose

that a+b+c> 2 and a > b > ¢, then

1 1 1 ab+bctFeca ab+bc+ca 1
T D I -
a+b+c a+b a+b b+ ¢ c+a at+b+c

cyc
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1 c(1+ ab) 1 1 1
= > +(a+b+c)>
a+b+a+b+ 1+ ¢2 a+b+c_a+b+a+b+c (a o)z
1 a+b 1 a+b+c a+b+ec
> —_— | 2>14+1+1=3.
_(a+b+ 1 )+<a+b+c+ 1 )+( 5 )— it

This ends the proof. Equality holds for a =b =1,¢ =0 up to permutation.
\Y%
Problem 22. Prove the following inequalily

(V2)™ (a1 + az)(az + a3)...(an + a1) < (a1 + a2 + a3)(az + as + aq)....(an + a1 + a2),
where a,as, ..., an are arbitrary positive real numbers.
(Russia MO)

SOLUTION. According to the following results

(a1 + a2 +as)® > (2a1 + az)(a2 + 2a3),
(20,1 + CLQ)(QGQ + a]_) = 2&% + 20,3 + 5a1a2 Z 2(0,1 + a2)2,

we are done immediately because

2" H(al +a)? < H(2a1 + a2)(2a2 + a;)

cyc cyc
= H(201 + az)(az + 2a3) < H(a1 +as +as3)>.
cyc cyc
\Y%

Problem 23. Let a,b, c be non-negative real numbers with sum 3. Prove that

ab + be+ ca >a3+l73—|—c3
a3b3 + 6333 + a3 — 36 )

(Pham Kim Hung, MYM)

SoLuTION. WLOG, we may assume that a > b > ¢. Denote

fa,b,c) = 36(ab + bc + ca) — (a® + &% + ) (3% + b33 + 2a?).
We will prove f(a,b,¢) > f(a,b+ ¢,0). Indeed,

A +S <+ 0+ ) AP+ + 3 <adb+)d

= (a3 + % + ) (%% + b3 + Ba®) < (a®+ (b+c)*)a®(b+ ).
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Also ab+bc+ca > a(b+ ¢). We obtain f(a,b,¢) > f(a,b+ ¢,0). It remains to prove

the first inequality in the case ¢ = 0, or namely
36ab > a’b?(a® +b%) < 36 > a?b?(a® + 7).
Let = = ab.The inequality can be rewritten in the form
t2(27—9t) < 36 & %-%(3—1:) <1,

which is exactly AM-GM inequality. Equality holds for c=0 and a + b = 3,ab = 2,

or equivalently a = 2,b = 1,¢ = 0 (and its permutations of course).
\Y

Problem 24. Let a,b,c,d be four real numbers satisfying that (1 + a?)(1 -+ 2)(1 +
2)(1 + d?) = 16. Prove the inequality

—3 < ab+be+ ca+da+ac+ bd —abed < 5.
(Titu Andreescu and Gabriel Dospinescu)
SoLUTION. We denote S = ab + be -+ cd + da + ac + bd — abed, then
S—1=(1-ab)(cd— 1)+ (a+b)(c+d).
Applying Cauchy-Schwarz inequality, we obtain
(8 —1)2 < ((1—ab)? + (a+b)?) (1 — cd)? + (c+d)?)
= (14+a®)(1 4+ (1 + )1 +d?) = 16.
Hence |S — 1| < 4 or equivalently —3 < S < 5. Equality can happen; for example,
(a,b,¢,d) = (1,-1,1,-1) and (1,1,1,1).
v

Problem 25. Let a,b, c,d be positive real numbers such that abed = 1. Prove that

S SN SRS SR
(1+4+a)? (14802 (1402 (Q+d)2~7

(China TST 2004)

SoLUTION. First, notice that for any non-negative real numbers z,y

1 4 1 S 1
A+2z)2 (1+y)2 " 1+azy




162 Chapter 9. Problems and Solutions —

By expanding, the above inequality becomes
(2 + 2z + 2y + 2% + y?) (1 + zy) > (1 + 22+ 2%)(1 + 2y + 3?)

e zy(z® +1?) + 12> 2zy + 2%y?
& (zy—1)2 +zylz —y)? > 0.

Let m = ab,n = ¢d = mn = 1, therefore

1 1 m+4n-+2

i+m (T9n mIDm+D)

Using these two results, we conclude that

SRS SRR SUNPUIN NN S S
(1+a)?2 (1402 (1+¢)? o

A+d)? " 14+m 1+n
Equality holds fora =b=c=d=1.

Comment. 1. We can also solve this problen; by Cauchy-Schwarz. Indeed, there

exist four positive real numbers s, ¢, u, v such that

stu tuv UvS vst

a=—7,b=—,¢c=—,a=—
v s

and the problem can be rewritten as

6

v
— 21

cye

According to

textcolorcul Cauchy-Schwartz, it’s enough to prove that

2
(Z vs) > Z(v3 + stu)?

cyc
< Z (3 4+ ud) > 2 Z vistu + Z s,
cyce cyc cyc
This last inequality is obtained from the following results

ng(s3 + 83+ u?) > Bsz’stu ;

cye cyc
sz(ss + 24 ud) = Z(ss’t3 +3ud +uds?) > 3 Z sit?u?
cyc cyc

and the proof is finished. Equality holds for s =t =u=vora=b=c=d=1.
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2, The previous solution also helps us create a similar problem as follow

* Let ay,aq,...,a9 be positive real numbers with product 1. Prove that

1 1 1
t it >
Ca+12 Tt VT Gagriye 21

Moreover, the general result is also valid (and solved through the same method)

* Let ay,ag,...,a, be positive real numbers with product 1. For k = \/n—1, prove

that
1 1 1 1

it Gaat 12 T T Gt 12 =
v

Problem 26. Let a,b, ¢ be positive real numbers. Prove that

a-+2b b+20+c+2a
c+2b a+2c b+2a

(Pham Kim Hung)

SOLUTION. By expanding, we can rewrite the inequality to

> (a+2b)(a+20)(b+2a) > 3] [(c+ 2b)

cyc cyc
& 2(a® +b% + %) + 3abe > 3(a%b + bPc+ a),

which is a combination of the third degree-Schur inequality and AM-GM inequality
2) "a®+3abc—3Y a’b=3abe+ Y a® =) a’(b+o)+ > (e +ab® —24°b) > 0.
cyc cye cyc cyc cyc

This ends the proof. Equality holds for a =b=c.

\Y%

Problem 27. Let a,b, c be three positive real numbers. Prove that
at + bt + ct a®+ b+
a2+ab+b2  B2+betc® 2Hca+a?” a+btc
(Phan Thanh Viet)

SoLuUTION. Notice that

3 34l :
a +b +c _ 3abe +a2+b2+02_ab~—bc—ca-
a+b+c a—I—b—I—C
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Therefore, the inequality can be rewritten in the following form

4 3
a 2 3abc ab 3abc
- - > """ & > .
E<a2+ab+b2 ¢ +ab)—a+b+c Za2+ab+b2“a+b+c

cyc cyc

According to Cauchy-Schwarz, we deduce that
b3 b?
Za2+aab+b2 :Zl—l—g_}_l’_ >
cye cyc b a

S (a+b+c)? _abc(a-+b+c)
3484l biera abtbetcea’

It remains to prove that

abe(a+ b+ ¢) > 3abc
ab+bct+ea T at+b+te

& (a+b+¢)? = 3(ab+ be+ ca)
which is obviously true. Equality holds for a = b = ¢.
\Y
Problem 28. Prove that for all non-negative real numbers a, b, c
a? + b2 + ¢ + 2abc+ 1 > 2(ab + be + ca).
(Darij Grinberg)

SovLuTioN. I will give four solutions to the above inequality.

First Solution. Transform the inequality into a quadratic form in a
f@) =a?+2(bc—b—cla+ (b—c)® +1.

(7). If bc — b — ¢ > 0, we get the desired result immediately.

(#3). If be — b— ¢ < 0 then (b— 1)(c— 1) < 1. Notice that
f=(c—b—c)* = (b—c)> —1=be(b—2)(c—2)— 1.
If both b and ¢ are smaller than 2 then by AM-GM inequality, we get
b2-b)<1, c2—¢)<1 = Af<L0.
Otherwise, suppose b > 2, then ¢ < 2 and clearly, A, < 0. We are done.

Second Solution. We denote k = a + b -+ ¢. According to the inequality

abc > (e +b—¢c)(b+c—a)(c+a—b)=(k—2a)(k—2b)(k - 2c)
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we obtain

4(ab + be+ ca) — k? < ~gak—bc (x)

The inequality is equivalent to
(a+b+c)? +2abe+1 > 4(ab + be+ ca) & 4(ab+ be+ ca) — k? < 1+ 2abe.

Taking into account (*), it remains to prove that

(%—2) abe < 1.

If 9 < 2k, we are done immediately. Otherwise, AM-GM inequality shows that

0 0 \Kk (9-2k) - k-k
(k 2) abe < (k 2) - i <1,

which is exactly the desired result. Equality holds fora =b=c=1.

Third Solution. Because 2abc+ 1 > 3V a2b2¢?, it remains to prove that
28+ 35 + 28 -+ 3229222 > 2(2¥y® + 323 + 232%)
where a = 22, b= 13, ¢= 2z%. According to Schur inequality, we obtain

3:z:2y2z2 + Zxﬁ > Zx4(y2 + 22) — Zx2y2(x2 + y2) Z 22.’173?/3-

cyc cyc cyc cyce

Fourth Solution. Rewrite our inequality in the form
(a—1D24+(B=1)2+4(c—1)? > 2(1 —a)(1 = b)(1 ~¢).

If a, b, c are all greater than 1, the conclusion follows immediately. Otherwise, suppose

¢ < 1. AM-GM inequality shows
(@=1)*+(b-1)* 2 2|(@~1)(b—1)| 2 2|(a = 1)(b~1)|(1 —¢) 2 2(a = 1)(b—1)(c~ 1)
and we are done of course.
Comment. The following is a similar inequality
a? + b2 + c® + 2abe+ 3 > (1 +a)(1 + b)(1 +¢).
\%

Problem 29. Let a,b, ¢ be positive real numbers and a® + b? + ¢ = 3. Prove that
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(Pham Kim Hung)

SOLUTION.
First Solution. (We use Cauchy-Schwarz inequalily) Rewrite the inequality to

1 1 1 1 1 1 3
—= — _Z ——1>=
(2—a 2)+(2—-b 2)+(2—c 2)'2

a
>3
N7 B S v Sy g S

Applying Cauchy-Schwarz inequality, we conclude that

LES > (a? + b? + c2)? _ 9
T2+ +A)—(at+ M+ A) 2@+ B+ AB)—(at + b4+ )

and we are done because 25" a® — Y a? < Y a? =3.

cye cye cyc

Second Solution. (We use Cauchy reverse) Notice that a(2 — a) < 1, so

1 1, _a _ 1. a? >1+a2
2—a 2 2(2-a) 2 2a(2-a)=2 2

therefore

1 3 1
2y 23ty =3
cyc

cye

We are done. Equality holds fora =b=c¢=1.

\%

Problem 30. Let a,b,c,d be non-negative real numbers. Prove that

% 2% 2 2d
_— —_ > ;
(1+b+c>(1+c+d>(1+d+a)(l+a+b)_g

(Vasile Cirtoaje)

SOLUTION. Rewrite it into another form

a+tc a+tc b+d b+d
1 —_— > 0.
( +a—l—b) (1+c+d) (1+b+c) (1+a+d) -

For all positive real numbers z, y, it’s easy to see that

(+3) (+5) 2 (1 a85)
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Thus we have

a+c a+c 2(a +¢) 2
1+ 1+ >4 —
( a+b)( c+d)—( +a+b+c+d) '

b+d b+d 20b+d) \?
1 1 > _ord )
( +b+c)( +a+d) = (1+a+b+c+d)

It remains to prove that -
2(a +¢) 2(b+d)
14— |[14+——— >
( + a+b+c+d) ( + a-t+tb+c+d 23
which is obvious. Equality holds fora =c=0,b=dora=c¢b=d =0.

Comment. Here is the general result

* Let a,b,c,d, k be non-negative real numbers. Prove that

ka kb ke kd ,
(1+b+c) (”m) (1+d+a) (”m) 2 (b 1)%

This inequality can be obtained from the results below

a ab
Zb+022 (*) ;mZI(H) ;

cyc

Notice that (x) is Nesbitt inequality for four numbers which has been proved in the

previous chapter. To prove (¥x), we note that it is equivalent to (after expanding)
Z a’b? + Z a3b -+ Z abc? > Z a’be.
cyce cyc cyc cyc
This inequality is true because
> a®b+ > "abc® > 2 a’be
cyce cyc cye

We have equality ifa = ¢,b =d =0ora=c=0,b=d.
\Y%

Problem 31. Let a,b, c be non-negative real numbers. Prove that
1 1 1 8 6
> .
a? + b? + b2 -+ 2 + c® +a? +<12+b2+c2 = ab+bctca
(Pham Kim Hung)
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SoLuUTION. WLOG, assume that a > b > ¢. Denote t = v/b% + ¢? and

1 1 8 6
b2 + 2 +cz+a2+a2+b2+02 " ab+bctca

f(a,b,c) = +

a? + b2
We have
c? c? 6 6
fabe) = fetl) = Grpy @ T e E@ o d) e d  abtbetea
6a (b+c— \/m c?
= oV f B(ab+ be+ca) aX(a+ )

S 6bc B c?
T b+ )VEEF+ (ab+ be+ca) a?(a?+c?)
6bc be

> — >0
T V202 + c2)(ab + be+ca)  a?(a?+c?) T

because
3v2a%(a® + ) > (ab + be+ ca)(b? + ¢2).
According to AM-GM inequality, we have

9 1 1 &6 9 a?+t2 6
4 r-—= ~2>o
a? +t2 +a2 + 2 at a?24t? a?t? at —

fla,t,0) =

-3 5
Therefore, we are done. Equality holds for (a,b,c) ~ (—%/——, 1, 0) :

\Y
Problem 32. Let a,b, ¢, k be positive real numbers and k > -2— Prove that

ak+bk+ck
at+b b+ec ctea

(Vasile Cirtoaje and Pham Kim Hung)

SoLUTION. I have two solutions to this problem.

First Solution. (Cauchy reverse) Rewrite the inequality in the form

5 (- 35) <3 (D) « Tt (S

cyc cyc cyc cyce

Notice that

ak—1p ak-1b 1 3 1
< == k—3pz | .
Loais Sl pum o\

cyc
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[t suffices to prove that

Zak’%b% < Zak“1.

cye cyc
According to AM-GM inequality, for 2k — 2 variables and using k > g, we obtain
(2k—2)> a" 1 =" ((2k —3)aF Tt + 1Y) > ) (2k — 2)aF T
cyce cye cye
Second Solution. The inequality can be rewritten in the form

“l(a-b) b’“"l( —9) “Ye—a)
a+b b+ c c+a

Notice that for all positive real numbers a, b

ak—l(a —b) _ gkl k-t )
atb = 2(k-1)

Indeed, this relation can be obtained directly by AM-GM

(2k — 3)a* + b 4 ab® 1 > (2k — 1)a* b,

According to (x), we conclude that

k 1 a . b) _ bk 1 _
Z a+b Z 2(k —1) =0

cyce
This ends the proof. Equality holds for a = b = c.
\Y

Problem 33. Let a,b,c be non-negative real numbers and a + b + ¢ = 3. Prove that

a1+ +bV1+B+cevV1+ad<5.

(Pham Kim Hung)

SoLuTION. By AM-GM inequality, we deduce that

Za\/1+b3 Za\fl+b)1—b+b2)< Za(1+b2).

cye cye

[t remains to prove that
ab? + b + ca? < 4.

WLOG, we may suppose that b is the middle number between a,b, c. That means
a(b—a)(b—c) <0, or ab? + a?c < abc+ a?b. Tt then suffices to prove that

abe+ a?b+ bc? <4 < b(e? +ac+ ) < 4.
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According to AM-GM inequality, we have

(a+c) (a+o) 54(2_ﬂ+_€)3=4.

ba® +ac+c?) < bla+c)® =4b- 5 5 3
We are done. Equality holds for a = 1,b = 2,¢ = 0 and its permutations.
\Y%

Problem 34. Let a,b,c be positive real numbers such that a + b+ ¢ = 1. Prove that

a c 3\/—
N

—a)(1 - b)(1 - o).

(Do Hoang Giang)

SoLUTION. Our inequality is equivalent to

ab 3\/§
cyc (a+c)(a+b) (b i—c)(c+a)— 4

WLOG, assume that ¢ = min{e, b, c}. Consider the following cases

(i). The first case. If a < b < ¢, simultaneously have

ab < ca < be .
(b+c)ec+a) ~ (a+b)(b+ec) ~ (c+a)(a+b)’

) b c
< .
@9+ - @thG+o = broeta)
So, according to Rearrangement inequality, we infer that

< a2b abe c?
“Vero@rowra \/ CESE R \/ (c+ %@+ )BT

C b 7! c
@+ 020+ ' G )BT o (a+c+ c+a)

abc 1 b
= \/3((a+b)2(b+c)2 t2g (a+b)(b+c))
(since Vz + 7+ 2 < \/3(z+y + 2).

It remains to prove that

abe +1 b > 9
(a+8)20b+c)? 2 (a+b)(b+c) ~ 16

which can be transformed to

(3ac—b)2 > 0.
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(ii). The second case. If a < ¢ < b, we have

ca ab be
@101 0 = bTocta) =~ Cta) et '
a c b

@+ @+h) -~ b+cta) = @rbbto)

So, according to Rearrangement inequality, we infer that

p< a?c abc b2c
- \/(a +c)(a+b)2(b+c) + \/(a +¢)2(b +c)? + \/(a +¢)(a+b)2(b+c)

abc 1 ¢
= \/3 ((a+c)2(b+c)2 ”'Z'm)'

It remains to prove that

abc +1 ¢ < 9
(a+c)2(b+c)2 2 (b+c)(cta) ~ 16

which can be transformed to an obviousness

(3ab—c¢)% > 0.
1
The inequality is proved in every case. The equality holds fora =b=c= 3

\Y

Problem 35. Suppose that a,b, ¢ are three non-negative real numbers verifying a? +
b + ¢ = 1. Prove the following inequality

a N b + c >3
ad+bec bBd+ac S+ab T

SoLUTION. I have two solutions to this problem.

First Solution. If all terms in the left hand side are greater than 1 then the inequality
is proved immediately. Otherwise, we may assume that
=<1 = < 3 bc.
T B rbe = a<a” -+
Applying Cauchy-Schwarz inequality, we obtain
b c 4 4

2 - H
b3+ac+c3+ab—52+02+%+gcg 1ty

ac ab . . . .
where y = — -+ — — a?. Notice that the relation z > y is equivalent to
c

b
(a® + be)(b® + ¢® — abe) < be



172 Chapter 9. Problems and Solutions —

& a*(1 —a? — abc) < be(a® + abe)
& a?(1 —a?) < be(a® +a + be).

which is obvious because a(1 — a?) < be. We conclude that

a b c 4 4
> —_= N4+ ———-123.
a3+bc+b3+ac+c3+ab—x+1+x (@ + )+:z+1 -
The proof is finished. Equality holds for a = 1,b = ¢ = 0 or permutations.
b b
Second Solution. Denote z = —f,y = %E,z = a?, so we have zy + yz + 2z =
a
a? + b2 + ¢2 = 1. We have to prove that
1 1 1 >3

:z:+yz+y+xz+z+my -
Denote s = z + y + z and p = zyz. Notice that

1 9 9
> = .
Z:z:—l—yz“:z:—l—y—l—::—I—:z:y—l—yz—l—z:z: s+1

cyc
If s < 2. we are done. Now consider the case s > 2. After expanding and reducing

similar terms, the inequality becomes
s+Tsp> 2+ 3p? +3ps? & (s—2)(1 —3sp) +p(s—3p) >0
which is clearly true because s > 2,1 > 3sp and s > 3p. The conclusion follows.
\%

Problem 36. Let a,b, ¢ be non-negative real numbers. Prove that

b+c¢ N ct+a + atb >4
Val+be Vb2 +ca VE+ab T

(Pham Kim Hung)

SoLUTION. Applying Hélder inequality, we obtain
b+ ’ ’
c
—_— b 24 >8 .
(Svts) (Boroetsi) 25(50)
Therefore, it’s enough to prove that
(a+b+0)*>4) a(b+c) & 6abe+» a® > a?(b+o),
cye cyc cye
which comes from the third-degree Schur inequality because

3abc + Za3 > Za2(6+c).

cye cyc




9.0. Problems and Solutions 173

Equality holds for a = b,¢ = 0 up to permutations.
Comment. By the same method, we can prove the following result

% Let a,b, c be non-negative real numbers and a + b+ ¢ = 2. Prove that

a b c
+ + >1
V3Fb2 42 V3I+2+a? V3+aZHb2 T

\%

Problem 37. Leta,b, ¢ be non-negative real numbers satisfying a? +b? + ¢ +abc = 4.

Prove that 2 + abc > ab - be + ca > abe.

(USA MO 2001)

SoLUTION. To prove the right hand inequality, just notice that at least one of a, b, c,
say a, is not bigger than 1. Thereforec we have ab+bec+ca > be > abe. Equality holds
for (a,b,c) = (0,0,2) up to permutation.

To prove the right hand inequality, notice that two numbers among a, b, ¢, say a and
¢, are not smaller than 1 or not bigger than 1. Therefore b(a — 1)(c—1) > 0 &
abc+ b > ab + be and it suffices to prove 2 > ac +b.

From the hypothesis, we have
a2+ +blac+b) =4 = 2ac+blac+b) <4 = (b+2)(ac+b—2) <0,
thus ac 4+ b < 2 and the desired result follows. Equality holds fora =b=c=1.
\Y
Problem 38. Let a,b, ¢ be non-negative real numbers. Prove that
a? + 2bc b? +2ca + \/@ >3,
Tre VeEra a? + b

(Vo Quoc Ba Can, Vu Dinh Quy)

SoLuTiON. WLOG, assume that a > b > c. First, we will prove that

a2 + c? \/b2+c2 \/’ [
b2 + c? 2 +a? ~

Indeed, this condition is equivalent to

a?+4+c* b2+ c?

a
b2+c2+c2+a2_-l-;+

b
a
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(a —b)%(a+ b)(ab— c?)
ab(a® + c?)(b? + ¢?) 20,

which is true because a > b > ¢. Using this result, we have
\/a2+2bc+\/b2+20a+ ¢? + 2ab
b2 + 2 2 + a2 a2 + b2
a? + ¢? b2 + ¢? 2ab
2\ et s P\ 2y ie
b? 4 ¢2 2 +ta a?+b
S [ " \/E N 2ab
=Vb a  V a?+b%

Denote z = \/%—i- \/E > 2. If z > 3, we are done. Otherwise, assume that z < 3. In
a

this case, we need
a b 2ab 2
- — - = >
\/;+\/;+\/a2+b2 $+V:z:2—2_3

2
_2—(3—:1:)2=

since . .
(z — 2)%(—z* + 2z + 5) > 0.
z2 -3 =

The inequality is proved, with equality for ¢ = & ¢ = 0 or permutations.

72

\%

Problem 39. Let a,b, ¢ be three distinct positive real numbers. Prove that

1 + 1 + 1 + 8 S 28
a2 =2 "~ B2 —c?| " |2—a?|  a?+b2+ 2 T (a+b+c)?

(Pham Kim Hung)

SoLuTIoN. WLOG, we may assume that a > b > ¢. Notice that

1 + 1 N 1 N 8 1 +1+1+ 8
202 B2 —2 a2—2 24242 a2 —b2 b2 T2 a2t

1 1 8
— a2 -
¢ (aﬂ(a‘z A tRm o) @it ¥ bg))
1 1 8
> -4 ———" __}>0.
=¢ (a4 + (a2+b2)2) =0
The right hand expression is a decreasing function of ¢, so it’s enough to prove the

inequality for c =0

1 +1+1+ 8 S 28
a?—-b2 b a? a?+b2 7 (a+b)?
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o 9 2+b +a2+b2 . 16ab +a+b>18
b a b2  a? " a?+4b?  a—-b—

Since the inequality is homogeneous, we can assume a > b = 1 and so the inequality

becomes:
1 1 16a a+1
2 S+ a?+ =+ >
(a+a)+a togt g o 218
20a—1)2 (a2-12 B8a—-12 a+1
=14 - - >
a T a?+1 a—1 =
2@ -1 (a—1)*a+1)? a+1
a(a? 4-1) a?(a? +1) a—1
a+ 1
a——

+2(a—1)2+ >4

> 4 and the desired result follows immediately. Otherwise, we

Ifa< g then

4
have a > 3 According to AM-GM inequality, we get

2
a+t1 + a+1 S 38 (a+1)
(a—1)

2(a—1) — 2
The problem is solved and equality cannot be reached.

a+1
a—1

> 4.

2(a—1)*+ =2(a—1f+5

v

Problem 40. Find the best positive real constant k such that the following inequality

holds for all positive real numbers a,b and ¢

(a+Db)(b+c)(c+a)  k(ab+bc+ ca)
> .
abe + a? + b2 - ¢? 28k

(Pham Kim Hung)

SOLUTION. We clearly have

(a +b)(b+c)(c+a) 8= c(a —b)2 +a(b—c)? + b(c—a)?

abe abe ’
ab+bc+ce  (a—b)?+(b—c)?+ (c—a)?
a2+ 2(a? + b + ¢?) )

So we need to find a positive number k satisfying the condition

Z(a_b)2 (2(a2+b2+62) —k) >0 o Z(a_b)2sc_>_0 (*)

ab

sym sym

where S,, Sy, S¢ are defined as
S, = 2a(a® + b* + ¢*) — kabc,
Sy = 2b(a® + b? + ¢?) — kabc,
S, = 2¢(a® 4 b? + ¢*) — kabe.
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(7). Necessary condition: If b = ¢, we have Sy = S; so if (%) is true, we must have
Sp >0« 2(a2 + 2b2) > kab.

By AM-GM inequality, we find that the best value of k is 4.

(i7). Sufficient condition: For k < 4v/2, we will prove that the inequality is always
true. WLOG, we may assume that @ > b > ¢ Then S, > S, > S.. Certainly,
S, = 2a(a® +b? 4 %) — kabc > 0. Let z = Vbe, then

Sp 4 S = 2(b+ c)(a® + b® + ¢?) — 2kabc>
2
> 4z(a? + 22?) — 2kaz® = 4z (a, - \/5:1:) > 0.
We conclude that

D Sa(b—0)® = (Sp+ Se)(a—b)* 2 0.

Conclusion: The best value of k is 4v/2. If k = 41/2, equality holds for e = b = ¢ or
a = 2b = \/2¢ up to permutation. If k < 4v/2, the equality holds only fora = b= c.

\Y
Problem 41. Suppose a,b,c are positive real numbers satisfying the condition a -+
b+ ¢+ abc = 4. Prove that

a + b + c >a+b+c
Vhte Veta Va+bT V2

(Cezar Lupu)
SoLUTION. First we will prove that a +b -+ ¢ > ab + bc+ ca. Indeed, we may suppose
that ¢ > b > a without loss of generality. We need to prove that

4—a-b
h— > - —92)?2 — —
a+b—ab> Pl (a+b—1) & (a+b—2)° > abla—1)(b—1).

Applying AM-GM inequality, we are done immediately

(a+b—2)? > 4|(a—1)(b—1)| > abl(a — 1)(b—1)|.

Returning to our problem, Cauchy-Schwarz inequality yields that

ceva +b+avb+ c+bve+a <4/2(a+ b+ ¢)(ab+ be + ca),
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and therefore

@ b RN (a+b+c)?
Vb+ce Veta Va+bd T eva+btavb+cect+b/cta

>(a+b+c)\/ atbte

2(ab+ be + ca)

a+b+c
> ——
=V
This ends the proof. Equality holds fora =b=c=1.

\%

Problem 42. (). Prove that for all non-negative real numbers a,b, ¢, we have

2a2 + be \/bz—l-ca 2¢2 4 ab
- >
a2+2bc b? + 2ca c? -+ 2a b"z\/_

(¥¢). With the same condition, prove that

a? -+ 2bc b2 4 2ca /c2 + 2ab
el g -~ — > 24/2.
2a2+bc+ 2b2+ca+ 2¢2 +ab — V2

(Pham Kim Hung)

SOLUTION. (%). Since the inequality is homogeneous, we may assume that abc = 1.

The problem becomes

\/293—{—1 \[y \/224—1
z+4+2 z+2
where z = a3,y = b3,z = &, zyz = 1. WLOG, suppose that z > y > 2. Let t = \/yz,

then ¢ < 1. First, notice that

(u+1)(22+1) 4dyz+2(y+2)+1 >4t2+4t+1_(2t+1)2
(b+2)(z+2)  yz+2w+2)+4 T 2+4t+4  (t+2)?°

Therefore, applying AM-GM inequality, we obtain

z+1 2y +1 2z +1 \/2:1:4—1 \/2t+1 2+ 12 \/2t+1
> 2 =4/ +2 .
\/a:+2 Vy+2+\/z+2 2V a2 PV 32 Vet TV T2

It suffices to prove that for all t < |

V2 +82)(2+t)+ 2/ (2t +1)(2t2 +1) > 24/2(2t2 + 1) (¢ + 2).

After squaring both sides and reducing similar terms, we get an equivalent form

3426+ 4/ 2+ 2)(2 + (1 + 2t)(1 + 2¢2) > 22t* + 8.
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Because t < 1, 2t > 2t2. It is enough to prove that

V2 +F2)(2+ ) +26)(1 + 2t2) > 5t2 42,

which is true by Cauchy-Schwarz inequality because ¢ - t3 > 2t and

VE+2) 2+ )1+ 2t)(1 + 2t2) > /(4 + 5t2)(1 + 5t2) > 2 + 5t%.

This last step ends the proof.

(i1). This second part can be obtained from the first part by taking bc = z%,ca =

y2,ab = 22. Equality holds for @ = 0,b = ¢ up to permutation.
\Y%

Problem 43. Let z,y, z be non-negative real numbers with sum 1. Prove that
(y — 2)? \/ (z — =) \/ (z —y)?
AL A7 Sde) YY) <3
\/ e TR K R ek A e el V3
(Phan Thanh Nam, VMEO 2004)

SOLUTIONI. Suppose z = min{z,y, z}. First we will prove that ifu =y —z,v =2z — 2
and k = —— then
12

vV +ku2 + y + kv? < 20z +y) + k(u + v)2.

Indeed, this one is equivalent to

2v/(z + ku?)(y + kv?) < z + y + 2kuw

< Az + ku?)(y + kv?) < (z +y + 2kuv)?
& (z—y)? + dzkv(u — v) + dyku(v —u) > 0
o (z—y)? +4k(u—v)(zv—yu) >0
& (z—y)? (1 —4k(z+y—2)) >0,

which is obvious. From the above result, we conclude that

LHSS\/2(w+y)+(xLyl;2L)2+\/z+ (z —y)?

=\/;(1—z)+%3+\/2+(w12y)2

S\/2(1—z)+%3+\/z+w

532 |1+ 3z]
= + = V3,
V12 V12
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which is exactly the desired result. The equality holds for z =y =2 =1/3.

Comment, With the same condition, we can prove that

N O L T e RV~ e LV
v

Problem 44. Let z,y,z be three non-negative real numbers satisfying the condition
zy + yz + 2z = 1. Prove thal

1 + 1 + 1 >2+1
Vety vtz Vztz© V2

(Le Trung Kien)

SoLuTioN. WLOG, we may assume that z = max(z,y,2). Denote a = y+ 2z > 0,

then obviously, axz = 1 — yz < 1. Consider the function

f(z) = 1 + 1 + 1
T VZErY vtz Vztz
1 N 2z 4+ y+z+2vVz2 +1
N R 22 41
1 + 2z +a+2Vz? +1
T Va z? +1 '

We have 9 .
Fla) = yz—z* —zVzt +1 <o,

\/(:::2 + 132z +a+2V2? +1) -

so f(z) is a decreasing function. That means

f(w)Zf(zll-)=\/5+%+ e
Y & N /25, 1
= (e ”2(\/5 2\/;(zz+—1)+¢§(az+1))+“ﬁ'

Since

1 (Va+1)*

Vo na@ i D VR D)

and f(z) > f (l) > 2+ % We are done and equality holds for z =y =1,z =0
a

up to permutation.
v
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Problem 45. Let a,b, ¢ be positive real numbers. Prove that

(e s () + (42 BT

(Pham Kim Hung)

SOLUTION. We can rewrite the inequality in the following form

a? a _ 9a?+b%+c?)
2 => :
Zb2+4zb— ab+bc+ ca +o

cyc cyc

Taking into account the following identities
a

_+§+_c__3: (a—b)2+(c—a)(c—b) ;
b ¢ a ab ac

a2+ b4 c*—ab—bc—ca=(a—b)?+ (c—a)c—1),

the inequality can be transformed into

(a =)’ M + (¢~ a)(c—b)N > 0,

where ( )
4 a - b) 9 -
M—CE.*- a?b? ab+bc+ca’
4 (c+a)(c+Dd) 9
N=2 — -
ac+ a2c? ab+bc+ca’

Notice that if a > b > ¢ then
a b a? b?
PILED LIS SLAPS pLARINE
cyc cyc cyc cyc

So we only need to consider the case a > b > ¢, because the case a > b > ¢ will be

reduced to their one after applying (%)

5 b 9
N>24+ 2 2 Jp.
= ac+ac2 ab + be + ca ’
wans Sy S __ 18

ab ' ac  ab+bc+ca >

1++5
2

(i). The first case. a — b < k(b — ¢). Then we have (a — b)? < (a — ¢)(b— ¢), so

Let k=

. Consider the following subcases

(a—b)2M + (c—a)(c—b)N > (a —b)*(M + N) > 0.
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(ii). The second case. a — b > k(b — c). It suffices to prove that M > 0 or

(a® 4 b* 4 6ab)(ab + ca + cb) > 9a%b?.
3+ 5
2

Since (k+1)b—a <kcand k+1 = , we deduce that

ab—(a~b)? = (Ejﬁ - a) (a - (3——{@) <ke (a + @*T\/%-)b) < 2¢(a+b).

Therefore
(a® 4 b* + 6ab)(ab + ca + ¢b) — 9a%b? > ab ((a® — b?)? — ab) + ca + b)®

> c(a + b)* — 4abc(a + b) = c(a + b)(a — b)? > 0.
We have the conclusion. Equality holds for a = b = c.
Comment. In Mathematics and Youth Magazine, issue 4/2007, I proposed the fol-
lowing slightly simpler ineguality
Tk Given positive meal numbers a,b,c, prove thai

2a\? / _ Ofa+b+c)?
|(1+-'Z;D (lﬂ—.) LH ) 'ﬁ' abﬁ:bcﬁ-wﬂ

.'/

Problem 486. Let a,b,c be non-negative wecl nuinbers and a? 4% +.¢¢ = 3. Prove

thai
L + 1 - 1 " il N L . 1
8—ab B8—be A3Zca ' B—a? F—2

SoruTion. Rewrite the inequality in the formm

E'(3 I3lab 1) E.(gjc —1) >3

oy " QYe

I"'—‘E—ab-*cz?—lcQ—

cyce
Applying Caudhy-Schwarz, we obtain

(Y ab 43" c?)?
= B b+ D we)—D k- A

LHS >
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Therefore, it suffices to prove that

(Zab+ 3)2 >3 (3Zab—}:(a2)2 +Za2b2+32a2>

cyc cyc cyc cyc
2
& (Zab) +6 (Zab) +9>9 (Zab) +3 (Za2b2)
cyc cye cye cyc
< (Za2) (Za2 - Zab) > Za2(b —c)?
cyc cyc cyc cyc

& }:(a2 +b2—c)(a—b)? >0

cyc
1
: 2 _ Y
smceZa —Zab—-z—Z(a b)“. ,
Denote S, = b2 + ¢ —a?,Sp = ¢ + a2 — b? and S¢ = a? + b — 2. Assume
a>2b2>c then S, <8 < Scand (a—¢)? > (a—b)2+ (b— c)?. Also, S, > 0
otherwise ba® 2> &° > §‘ false. We conclude that

B (@ + b — EYla— b= Bab— o)’

> (S Sed(b — ) + (B + 8p) (e — B)?=2c"(a — b)® 4 2e%(b — &) > .
Equality holdsfore =b =c=0L1ora=»b= }\/g,,c:'ﬂ) up to permutation.
V g
Y

Problem 47. Let a,b, ¢ be three positive weal numbers. Prove that
1 1 1 3
: - 4 — e — > .
ave4 b byvb e i eve+a T o/ 2abe
(Phan Thenh Nam, VMEO 2005)
' 2be v 2ea vV2ab

SOLUTION. [Let 2 = ———e Y = ~e—— & = .
Vala+B)" T JEl+e)  Wfcletn)

that = 4y .z > 3. However, iit suffices to prove tthe following stronger result as follow

2¢ + 2a 4 2b
Vietb)b+e) /(b cleta)  ieta)n +b)
Denote u = b+ ¢, v = yfc 8, w = via+b. We get

w? p? — w? #w? —? 2 4 r? —w?
Y — g m gy
w pw w

We need to prove

3L ey +yz 20 =




e ——
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The inequality becomes

v(v? +u? — w?) +w@? +v® - u?) + w(w? + w? - v?) > Suvw

& (v + 0%+ w?) + (P + 0w + w) > (Ve 4w + W) + Suwvw.
But
(v + oY) + (W + v%w) + (B + w?u) > 2(v%u 4 w?v + W),
viu 4 w?v + v?w > Suvw.
The proof is finished and equality holds iff a = b = ¢.
\%

Problem 48. Prove that az+ by + ¢z > 0 if a,b, ¢, z,y, 2 are real numbers such that

(a+b+c)(z+y+2)=38; (@A2+2+D(2?+vy2+22) =4

(Mathlinks Contest)

[

a? +b% 4 2 a b
and a; = —,b) = —,¢; = —, 2y = T,y =
« « «

72 + y2 + 22
ya, 23 = za. We infer that

SoLUTION., Let a =

2 2 2
% =@+ AP+ i+ D) =2,

224y 4+ 22 = (2 + P + 2Dl = /(a2 + 02 + c2)(2? + y2 + 22) = 2,

af +b} + ¢ =

a1y + b1y1 + 121 = az + by + cz.
The inequality can be rewritten as
(a1 +z1)? + (b + )+ (aa +21)? > 4.
According to the following relations

(ar+b+a)m+n+za)=@+tbtc)(z+y+2)=3,

we are done immediately since

—

(ar +2)2 + (b +11)2 + (a4 21)° = =(a1 + by + 1 + 21 + 41 + 21)°

> —(a;+bi+a)(zr+yi+2)=4

ol i W

\%
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Problem 49. Let a,b, ¢,d be non-negaetive real numbers with sum 4. Prove thal

a+1 [b+1 c+1 \/d+1
- >4
\/ab+1+ bc+1+ cd+1+ da+1—

(Pham Kim Hung)

SoLUTION. According to AM-GM inequality, we get

. @+ DE+1)(c+1)(b+ 1)
LHS 2 4\/(:b+ 1)(be+ 1)(cd + 1)(da +1)’

and it remains to prove that
(a+1)(b+1)(c+1)(d+1) > (ab+1)(be+ 1)(cd + 1)(da + 1).

After expanding, the inequality becomes

abed+ Y abc+» ab+ Y a+1

sym sym sym

> (abed)? +abchab+Zab2c+ Zab+ 14 2abed

cyc cyc cyc

< 44 ac+bd+ Zabcz (abed)? + abed + abed Zab+ Zab2c.

sym cyc cyce

The condition a + b+ ¢ + d = 4 implies that abed < 1, therefore
ac+ bd > 2Vabed > 2abed > 2(abed)? = ac+ bd > abed + (abed)? (x)

According to the inequality (z + y + z 4+ £)? > 4(zy + yz + 2t + tz), we obtain

16 = (Za)2 > 4Zab.=> > ab<4

cye cyc cyc

2
=16 > (Zab) 24Zab2c =>4_>_Zab2c (xx)

cyce cyc cyc

Moreover, we also have

2
(Zabc) > dabced Zab = Zabc > abchab (% % ).
cyc

cyc cyc cye

Using (%), (x*) and (x x ), we get the conclusion immediately.

\%
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Problem 50. Prove that for all non-negative real numbers a,b, ¢ then

@, b P >\/a_-|-\/l;+\/5
Va+b Vb+ce Veta” N ’

SOLUTION. Let z = /a, y = Vb, z= /c. The inequality becomes

2 y? P zty+z

xT
4
\/gz+y) VE+22 VAR V2

2 2

& Z -3 > (z+y+ 2)%
cycwﬂ/ cyc\/w2+y )2+ 22) ~

Notice that -
2l —yl A A A g

22 4y2 | g2 422 | 22 4 g2

=0,

hence
274 2y 220 24yt it 24t

12+y2+y2+z2+z2+12—$2+y2 W2+ 22 | 22§42

Furtherniore, the following sequences

x4y y? 2> 222 ] 1 1 1
\/$2+y2’\/y2+z2’\/z2+w2’ ' \/x2+y2’\/y2+z2’\/z2+w2 '

are monotone in the opposite order, so Rearrangement inequality shows that

Z 4a2y? Z 4z%y? ) 1
@+ 2M?) GV Y2 a4y
y? 4022
Z\/(:32+_/2) (v2+2%) ~ & ~ g% +y?’

cye
It remains to prove that

:134+y4 4:L'2y2 9
Zx2+y2+§$2+y2 = (z+y+2)

cyc

‘2+ 2 2
& Zw zy +Zm2m+yy2 ZZny

cye cyc cyc

which is obvious. Equality holds for z = y = 2, or equivalently a = b = c.
\Y

Problem 51. Let a,b, ¢ be real numbers. Prove that

/202 —bc+‘i°'/2b2 —ca+ V2c2—ab> 0.
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(Pham Kim Hung)

SoLUTION. First, we notice that the inequality only needs to be considered for a, b, ¢

non-negative. Now, consider the identity
4?42 -3y =(z+y+ 2)(z? + 32 + 22 — 2y — yz — 22)

therefore, (z + v + 2)(z + ¥ + 2° — 3zy2z) > 0, so we can write

V202 —be+ /262 — ca + V/2¢2 — ab > 0

o 2 Za2 - Z be > 33/(2a2 — be)(2b2 — ca)(2¢2 — ab) (%)

cyc cyc

Without loss of generality, assume that a > b > ¢. Notice that the inequality is
obvious if ¥/2b% — ca > 0, ¥/2c? — ab > 0. It is also obvious if (2b% — ca)(2¢? — ab) < 0
(due to (x)), so we may assume that 2b? — ca < 0,2¢% —ab < 0.

(#). The first case. a > 2(b+ c). We conclude that

2a% — be > 4(ab — 2¢% + ac — 2b%)

= /202 —be> —¥/2b2 — ca—3/2¢? — ab

= V202 —bc+ V262 — ca+ V/2¢2 — ab > 0.

We used the inequality {/4(z +y) > ¥z + /7.
(i). The second case. If a < 2(b+ ¢). WLOG, assume that abc = 1. We have to
prove that

2(a® 4 6% + c2) — (ab+ be + ca) > 3¢/ (23 —1)(1 — 263)(1 — 2¢3).

Denote

f(a,b,¢) =2(a® + b% + *) — (ab+ be+ ca) — 33/(2a% — 1)(1 — 2b3)(1 — 2&3).
We clearly have f(a,b,c) > f(a, Vbc, /bc) since
2(a® + b + ¢) — (ab+ be+ ca) > 2(a? + 2bc) — (20Vbe + be) ;

and

(1-2®)1 -2 <1 — 2VB33)?

It remains to prove the initial inequality in the case b = ¢, namely

V2a2 — b2 > 2/ab — 202,
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This inequality is equivalent to
2a? + 156 > 9ab,
which is clearly true due to AM~GM inequality. Equality holds for a = b =¢ = 0.

Comment. The following stronger inequality holds

1+ 513
16’ t

Vka? —be+ Vkb? — ca + Vke? —ab > 0.

hen

% Given real numbers a,b,c, and k =

To prove it, we use the same technique as shown in the above proof. Similarly, we

only need to consider the main case a > b > c,abc =1,kb®> <1 and kc® < 1. Let

f(a,b,¢) = k(a? + b2 + ) — (ab+ be + ca) — 33/ (ka3 — 1)(1 — kb3)(1 — kc3).

We are done easily if a < k(\/l_) + /¢)? since, in this case, we have f(a,b,c) >
f(a, vbe, Vbe). It remains to consider the case o > k(\/l; + 4/¢)2. Denote

g(a) = ka® — be+ 4(kb? + kc? — ab — ac).
We infer that
2
¢'(a) = 2ka — dk(b+c) 2 2Kk (VB + V) —4(b+¢) 2 0.
Therefore
2
g(a) Zg<k (\/l_)+ \/E) )
2
Denote = = vb, y = \/¢. The inequality g (k (\/I; + \/E) ) > 0 is equivalent to
K3z + y)? — 2%y? + dk(z? + y?) — dk(z 4+ v)%(2® +4%) 2 0

or
k(2 + %) + (4k® — 8k)(z%y + z3®) + (6k% — 8k — 1)z?y? > 0.

This last inequality is obvious since all the coefficients are non-negative. Therefore
g(a) = ka? — be + 4(kb? 4 ké® — ab —ac) > 0

= Vka? — bc > ¥/4(ab+ ac — kb% — kc?) > vab— kc® + Vac — kb?

= Vka? —be+ Vkb? — ca+ Vke? —ab> 0,

8k —1
which is the desired result. Equality holds for (a, b, ¢) ~ ( P 1, 1) .

\Y%
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Problem 52. Prove that the following inequality holds for all real numbers a,b,c
(@® + b + )? > 3(a’b T b3c + cPa).
(Vasile Cirtoaje)
SoLuTIOoN. We give four solutions to this problem.

First Solution. Notice that
4(a? + b2 + ¢® — ab — be — ca) ((a2 + 6 4+ A2 -3+ e+ csa))
= ((a3 4+ b + ) — 5(a?b + b2c+ cPa) + 4(ab® + b + ca2))2
+3 ((a3 153+ ¢%) — (a?b + b2c + a) — 2(ab® + be? + ca?) + 6abc)2 > 0.

Second Solution. WLOG, suppose that ¢ = min(a,b,c). Let b=a + z,c =a+y
with z,y > 0. By expanding, we obtain

(a® 4+ b + *)? — 3(a®b + bPc + Pa)=
= (a:2 + 9% — :cy)a2 + (w3 + 3 + dxy? — 5w2y)a +z* +* + 22%° — 32%y.
Consider the expression as a quadratic of a, then
A= (2*+ v+ dzy? — 5zPy) — 4(2® + ¢ —zy) (et + vt + 22%y% — 32%y)
= —3(z® — 2’y — 223" — %) < 0,
so the desired result follows immediately.

Third Solution. The following identity gives the conclusion
2(a? + b% + c®)?2 — 6(a’b + b3c+ c®a) = Z(a2 — 2ab + be — ¢ + ca)?.
cye
Fourth Solution. The following identity gives the conclusion
6(a® + b2 + *)? — 12(a®b + b3c + cBa) = ‘L:(a2 — 2b% 4 % 4 3bc — 3ca)?.
cyc
Comment. Using this result, we can prove the following inequality easily enough by
the Cauchy reverse techique.
% Let z,y, z be positive real numbers such that = + y + z = 3. Prove thal

T n y + 2
l4+zy 14yz 142z

3
> —.
-2
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Indeed, to prove this inequality, just notice that

x z%y 22y 1
=z — >z — =z — -/ z3.
1+ zy 1+ zy 2, /zy 2

\%

Problem 53. Let a,b, ¢ be three real numbers satisfying the condition a®+b*+c? = 9.
Prove that
3min(a,b,¢) <1+ abe.

(Virgil Nicula)
SoLuTioN. WLOG, we may assume that ¢ > b > a. Consider the following cases

(¢).a <0 : Let d = —a and e = |b] . We will prove that
—~3d <1—dce < d(ce—3)<1.

If ce < 3, the conclusion follows immediately. Otherwise, if ce > 3 then

o2 —6\° _ (d2+4e?—6)\°
dP(ce—3)(ce—3) < [T T2ET8) (A e ) =1,
3 3
and we are done. Equality holds for a = —1,b = ¢= 2 up to permutation.

(#3). If @ > 0 : The problem can be rewritten as
a(a® + b + ¢?) < 3 + 3abe.

Since 2abc > a® + ab?, we only need to prove

34 abc > ac? ¢ 3 > ac(c—b).

a < b, hence ¢ < /9 — 242, so

ac(c—b) Laclcza) < aV/9 — 202(\/9 — 202 — a).

It suffices to prove that

a(9 —2a%)—a*/9~2a < 3
& f(a) =208 — 9a? — (3a —1)? < 0.
If % <2 <1 then

f(a) =2a%(a® —1)-7a? — (3a—1)* < 0.
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IfISaS\/gthen
11

f(a) = (a4 + g) (2a% — 3) — 6a%(a® — 1) — 6a (a - -1-5) <0.

If \/g < a < V3 then
f(a) =a?(a® - 3)(2a® —3) + (1 — 6a) < 0.

The problem is completely solved. There is just one case of equality.

Comment. The following inequality, proposed by Vasile Cirtoaje, can be proved in

the same manner.
* Given non-negative real numbers a,b, ¢ with a® + b% 4 ¢? = 3, prove that
1+ 4abc > 5min{«, b, ¢}.
\Y

Problem 54. Let a,b, c,d be non-negative real numbers such that a +b+ c+d = 4.
Prove that

(14 )1+ B4+ )1+ dY) > (1 +a®)(1 + )1+ )1 +d?).

(Pham Kim Hung)

SoLuTIoN. Notice that for all > 0, (1 + z#)(14 ) > (1 4+ z3)(1 4 2?), therefore

[Ta+aJ]a+a) 2 [T +a® ] +a?).

cyc cyc cyc cyc

It’s enough to prove that [](1+a?) > T[(1 + @), or Y. In(1 +a?) > Y In(1 + a).

cyc cyc cyc cyce
Denote

f(z) =In(1 +a®) — In(1 4+ a) — “; L
Its derivative is

2z 1

_ . (z—1)(8 —z?)
1422 142

o 1
=) = 2 20 v+ 22)

so f(z) is increasing on [1,v/3] and decreasing on [0, 1] U [v/3, +00]. That implies

1(2) = min{f(1), f(2.2)} = 0.

min
0<z<5.2

v ———
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If all a,b,c,d are smaller than 2.2 then we conclude that
a—1

Y f@)20 = Y +e?) -l +a) > 3= =0

cyc cye cyc

2
Otherwise, suppose a > 2.2. Since the function g(z) = 11-:2:
T

on R* for z = —1 4+ /2 and g(a) > ¢(2.2), we deduce that

attains its minimum

o(@)- 9(5) 9() o(d) > 0(22) - (o (-1 +VE)) w108 > 1.
This ends the proof and equality holds fora =b=c=d = 1.
v
Problem 55. Find the best constant k (smallest) for the inequality
a® + b +c* > ab+ be + ca,
to hold for a,b, c are three non-negative real numbers with a +b+ ¢ = 3.
(Generalization of Russia MO 2000)

1
SOLUTION. In example 1.1.1 in chapter I, this inequality is proved for k = 5 and
1 1
therefore it’s true for every k > 3 Consider the inequality in the case k < 3

Lemma. Suppose a,b> 0 and a + b= 2t > 1 then we have
a® + % —ab > min ((2t)k,2tk - t2) .

Indeed, WLOG assuine that a > b. There exists a non-negative real number z with

a=t+z,b=t—xz. Consider the function
f(@) = (t+z)*+({t —z)* —t* + 22
then

fl(z) =k(t+z)* 1 —k(t —z)*! + 22,
f(z)=k(k—1)(t+2)" 24+ (- z)F%) + 2,
f(x) = k(k—1)(k—2) (t +z)F 3 = (t—2)*?).
So f"'(z) < 0, hence f”(z) is a monotone function and therefore f'(z) has no more

than two roots. Since f'(0) = 0 and

"(0) = 2k(k - 1)t*F 2 +2=2-2k(1 — k) > 0,
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we conclude that f attains the minimum at 2 = 0 or z = ¢ only.

Returning to our problem, WLOG, assume that a > b > ¢. Let a + b =2t > 1, then
o + % + & — (ab+ be+ ca) > min {(2t)F, 2t* — 2} — 2ct + .

(7). (2t)* < 2t* — ¢2. Using the lemma for 2¢ and ¢, we obtain

N e\ 2
a*4+-bF 4 cF —(ab+betca) > (2t)F+F—c-2t > min {(Zt +¢)%,2 (t + 5) - (t + ~) } .

Since 2t + ¢ = 3, we can conclude that

af +bF 4 k- (ab+ bc+ ca) > min {3’“,2- —;; — -Z} .
(i), (26)F > 2tF — 2. We will prove that g(¢) 2.0 where
g(t) = 2t* + (3 — 2t)* — 2¢(8 — 2¢) +t* = 2t* 4 (3 — 2t)F — 6t + 3¢°.
Notice that

g (t) = 2kt*~1 — 2k(3 — 2t)*1 — 6 + 6t,
g"(t) = 2k(k — 1) (tF 72 — 2(3 — 2t)*72) + 6,
g"(t) = 2k(k — 1)(k - 2) (t** —4(3 — 2t)*3)..

Because ¢g’’(t) has no roots if (¢ > 1), we infer ¢’(t) has no more than two roots. We

deduce that
) ) 3 . 3k 9
838,90 =min (s (7)) = min (0.2 55 - 7).

According to these results, we conclude that for all positive real k

3k 9
a* + 6% + & — (ab+ be + ca) > min (0,2-51;—1).

Therefore the best constant k is

3k 9 2In3—-31n2
2 ¢ — T — = — rrvv - -
#=1 ° T ThaTme 080
In this case, equality holds fora=b=c=1ora=b= ;, ¢ = 0 or permutations.
\Y%

Problem 56. Let a,b, c be positive real numbers. Prove that

a b ¢ a? + b? ¢
N [y o
b+c+a— ab+bc+ co
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(Vo Quoc Ba Can)

SoLuTION. Notice that if @ > b > ¢ then

(o42)- (o) -t

so it’s enough to consider the case a > b > ¢. By squaring both sides, we get

a? 2b _ 9(a? +b% + ¢?)
E hatl E 2 s ]
p” t i ab+4bc+ca

Moreover, using the following identities

— )2 - —
2+£+g_3:(b c) (a —b)(a —c)
a b ¢ be ac
a2 b2 c2 (b — 0)2(b+ c)2 (a2 - b2)(a2 — 02)
prtate 3= —ps  *F aZt?

and a® + b2 + ¢ — (ab+ be + ca) = (b — ¢)? + (a — b)(a — ¢), we can rewrite this
inequality to (b — ¢)?M + (a —b)(a — ¢)N > 0 with
2  (b+c)? 9

Mzi);-l_ b2¢? _ab+bc+ca;

3+(a+b)(a+c)_ 9
ac a?b? ab+bc+ ca
I[fb—c>a—bthen 2(b—c)? > (a —b)(a — c). We have
>89
“be ab+bctcaT

6 18
D ———_— >
M+2N‘bc ab+bc+cau_O

N =

M

We conclude that
Mb— ) + N(a—b)(a—c) > %(a —b)(a—c)(M +2N) > 0.

Now suppose that b — ¢ < a — b, then 2b < a + ¢. Certainly M > 0 and

2 9
N23+a+b+c23+_3_2(\/§+\/§) |
ac ab? ac ab ac+ ab ab+ be+ ca

This ends the proof. Equality holds fora =b=c¢.
Comment. The following similar inequality is a bit more difficult

* Given positive real numbers a,b, ¢, prove that

a® ¥ & 9(ab+ be+ ca)
R A > 12.
ittt grrre 2 12
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PRrRoOOF. Notice that if a > b > ¢ then
az_‘_bz_‘_cz>b2+cz+a2
mrtatazateta

so we only need to consider the inequality in the case a > b > ¢. Rewrite it to

(a_b)2((a+b)2 9 )+(c_a)(c_b)<(c+a)(c+b)_ 9 )212’

a2b? a4+ b2 4 2 a2c? a? + b2 + 2
then we denote

M_(a+b)2_ 9 _ N__(c+a)(c+b)_ 9
T a2b? a2+ 242 a?c? a? 4+ b2 4 2

First we will prove that N > 0, or
(c+ a)(c+b)(a? + b2c?) > 9c%a’.
Since b > ¢, we may prove the following stronger inequality as
(c + a)(2¢)(a® + 2¢?) > 9c%a?

or
2a% —Ta%c+4c2a+ 42 >0

or
(a — ¢)*(2a +¢) > 0.

which is obvious, so N > 0. Next, we divide the problem in two cases.

(i). The first case. a — b < b— ¢, then
(c— a)(c—b) > 2(a — b)?

and the inequality is proved if we can prove that

(c+ a)(c+b) 10 S0

> —
M+¥2N 2 —3a AT

Indeed, this inequality is equivalent to
(c+a)(c+b)(a? +b% + ?) > 10a%c?,

Since b > GTJFC we infer that (due to AM-GM inequality)

(c+a)(c+b)(a® + b2 + ) > (c + a) (c+ a;rc) (a2 +c2+%(a+c)2)
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> 2v/ac- V3ac- 3ac > 10ac.

(ii). The second case. a —b > b — c. In this case, we will prove that M > 0 or
(a+b)2%(a+b+c)? > 9%

If @ > 2b, this inequality is immediately true because a? + b% > §ab. So we may

assume that « < 2b. Since ¢ > 2b — a, we only meed to prove that
(o + B)® (a® # B® 4 (26 — &)* ) > 0a?bt.

b 1
Let z = —, then we have 3 <z < L The inequality becomes
a’

e + 1) (B —dz42) > 927

1r

Flz) = 52" # 62° — 1022 4 2 > 0.

1
{5, I].;|,, Zo —

The derivative f'(x) = 2023 + 182" — 20z has exactly one root in

%ﬂ‘ Therefore ouin F(z) = flmo) » 10, and the condlusion follows.
BEaEL

1%

Problem 57. Suppose thaiw,b,¢,d ure positive real mumbers satisfying o +5% 4+ 2+
d? =4. Prove that

1 " i + I n Il <
8—abc B—Ybed B3—cda I3-—dab T

(Pham Kim Hung)

SopuTioN. Let z =abe,y = dbd, z =wad,t = bed. The problem becomes

Zq_m*’?« © El_mz;lm.

YC
" "'4"f8'm o2
= \3 T4

According vo AM-GM ineguality, we deduce
L .
WILOG, essume that = < ¥ < 2z < . [First, we consider the case z +p < T [n this

4y = m&(rzH—d)( (a - 62) o /2(E + )

N\ 372
case, it's easy towee that t = bed = ‘(gb and z < . Since (3—2) ! isanincreasing
convex function, we have o
1 L1 1 _

3—.:1:+3—;yﬂ_ 3 -z +3——|t — 8 —1/4

11 1
=t - = &2
tyt Ty YT mee
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1
Now suppose that z + vy > i Since

(1-2)(1z+3)-(1-y)(dy+3)=(z—-y)(1 -4z —-4y) 20,
(B—2)4z+3)-(8—y)dy+3)=(z-y)(9 -4z -4y) <O
according to Chebyshev inequality, we deduce that

1—z s (L~2){dr+3 !
e E(%-x)(m+3)—4(z(“ m)'(4m+3')(z(3 _-r)|4a:+‘3))

GYc ve eye

It remaims to prove that 5°(1 —a){dz 4 3) =0 or 5 =124 3 z—-43 22 > 0.
aye

aye oy
Since Y w? =4, AM-GM inequality shows that abed < 1L and 37 L > 4. Therefore
eyce icyc
b T R = obied ‘(IZ i) > 4abed | > 4&21120?(22 (wk)
Naye ™ )

Let m = 02,mn = b%,p =g =d? then T m = 4. According to (%), we infer that

eye

8> 12+ dmnpg — AE mng

oy

Since x < ¢y < z & i, it follows that m < m <p <. Let r = %l(n +1p # ¢) then by
AM-GM ineguelity, we get np+pg+qn < Ir? end npg < 12, Because m < i, we get

8 = 12 — dnpg(ll — m) — dm(np + pg+gm) > 12 — dr¥(1 —m) & dm - 32,
Replacing m with 4 —3r in the inequality @bove, we obtain
5> 4— 4 —3r)r? —ar¥(8r —8) = 12(r — 1)2(—r? + 2r 4 1) 2 0.
The protllem is completely solved and readhes egudlity forw =b =¢c =d = 1.
v
Problem 58. Suppose thet n positive real numbers.z1,x9, ..., n satisfy the condition

1 i 1

7
142 7 +.z0 *oeety oz, 2

Prove dhat
123 u' 2

' 4
> 27
&;)j'::l m’ + -mg' .
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(Titu Andreescu, Gabriel Dospinescu)

— mi. Therefore, ay +ag+... +

: 1
SoLuTION. For each i € {1,2,...,n}, we denote a; = I
T

a, = 0 and a; € [-1,1]. Consider the expression

S = Zma —= 25~ Z (1+a5)(1 +a;)

—a;a;
i,5=1 ij=1 ] L)

We have . .
P =" (1+a)(l+a)(1—aa;)=n?~ )" ala? <n’

i,j=1 4,j=1
According to Cauchy-Schwarz inequality, we conclude

2

2S-P> Z (1+a;)(1+a;)| =nt

,J=1,mn

2
Therefore S > % and the equality holds for z; =29 = ... = 2, = 1.

\%

Problem 59. Let a,b, ¢ be non-negative real numbers. Prove that

ab be ca at+b+c
+ + < :
at+4db+4c b+4dc+4a  c+4a+4b 9

(Pham Kim Hung)

SoLuTIoN. WLOG, we may assume that a + b + ¢ = 3. The inequality becomes
Z 3(lb
cye a + 4(3 - a _

& > ba-bd-c)<JJd—a) & a®b+b’c+fatabe< 4

cye cye

cyc cyc

We have two different solutions, for this last inequality

First Solution. Since a + b + ¢ = 3, the inequality can be rewritten to
27(a?b + b2c + c?a) + 27abe < 4(a + b+ ¢)®

& 27Za2b+ 27abe < 4Za3 + 122a2b+ IZZab2 + 24abc

cyc cyc cyc cye

< 152a2b+3abc§42a3+122ab2

cyc eyc cye
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& 12 (Zagb—Zabg) <4 (Z(B —‘X:a2b> + (—3abc+Za3> :

cyce cyc cye cyc cyc

This inequality can be rewritten to
12(a —b)(a — c)(b—c) < Sa(b—¢)? + Sp(c — ) + S.(a —b)? ()
where S, Sp, S. are given by .

1
Sa:2b+c+-1?:(a+b+c), Sb:20+a+%(a+b+c), Sc=2a+b+—2-(a+b+c).

Notice that we will prove () for all non-negative real numbers a, b, ¢ (we have already
dismissed the condition a + b + ¢ = 3). Because all S,, Sp, S¢ are linear functions of
a, b, ¢, if we replace a,b,c with a — t,b —t,c— ¢t (t < min(a,b,c)) then the differences
a—b,b— ¢, c—a are unchanged, the left hand expression of (%) is unchanged but the
right hand expression of (x) is decreased. So it suffices to prove the inequality in the

case min(a, b, ¢) = 0 (as we let ¢t = min(a, b, ¢)) and it becomes
a?b <4,

which is clearly AM-GM inequality because 2a + b = 3.

Second Solution. WLOG, assume that b is the second greatest number of the set

{a,b,c}. We certainly have
cb—a)(b—¢c) <0 & c(b® —bc—ba+ac) <0 & bic+Pa<Lbe(a+c)
and it remains to prove that
be(a+c)+a’b+abc<4 & bla+c)? <4

which is also AM-GM inequality. Equality holds for a = 2,b = 1,¢ = 0 up to
permutation.

\Y%

Problem 60. Suppose that n is an integer greater than 2. Let ay, aq, ..., a, be positive

real numbers such that ayas...a, = 1. Prove the following inequality

a;+ 3 as+ 3 an+ 3
vii + ————— > 3.
@ t1? (e T T Gy ©

(United of Kingdom TST 2005)
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SoLuTION. Notice first that it is sufficient to prove the inequality in the case n = 3.
For a bigger value of n (n > 4), we only need to choose from the set {aj,aq,...,a5}
the three smallest numbers, say a;,as,as. Since ajasas < 1, there exists a positive

b
number k such that LN L k> 1, then
ay as as

Z a; +3 a;+3 as + 3 az+3 Z a+3
(a1+12_(a1+1) (ag + 1)? (a3+1 (a+12_

We will now prove that if a, b, ¢ are positive real numbers and abc = 1 then

a+3 b+3 c+3

> 3.
@t 12 T Br 1 T erE S
Let ay = 2 b, = 2 c 2 . The inequality becomes
LI A R Auatity

ar+bi+a +a%+b§+c§26.

Since abc =1, we have

1 1 abe 1
[1(2-2) -2 Lo

cye cyc

Let z=a; — 1,y =b; — 1,2z =c; — 1, then z,y, z € [-1, 1] and we infer that
(z+Dy+Dz+1)=0Q-2)1—-y)(1-2) s>z+y+z+zyz=0
By AM-GM inequality, we deduce that 22 + y2 + 22 > 3(zyz)?/? > 3zyz, thus

a1 +by+c +a§+b§+c§—6:2(a1—1)(a1+2):Zm(m+3) > 0.

cyce cyce

This ends the proof. Equality holds for a = b =c¢=1.
\Y%

Problem 61. Let a,b,c be non-negative real numbers with sum 2. Prove that

Va+b—2ab+ Vb+c—2bc+Ve+a—2ca > 2

(Pham Kim Hung)

->

SOLUTION. WLOG, we may assume that a > b > ¢. Let z = a+b—2ab, y = b+c—2bc

and z = ¢ + a — 2ca. The inequality is equivalent to (after squaring)

2> JEy=2)  ab.

cye cye
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Notice that 2z = ¢(a+b) 4 (a—b)? and 2y = a(b+c¢) + (b—c)?, so Cauchy-Schwarz

inequality gives us that

2/Zy > /cala + b)(b+¢) + |(a — b)(b—¢)|.
Applying Cauchy-Schwarz inequality again, we have

Vea(a+b)(b+ ¢) = Vea- f(a+b)(c+b) > ea (Vea+b) = ca+ by/ea.

It remains to prove that

Sla-b)-c)l+> bv/aa>) ca

cye cyc cyc

& 20—’ +2a-b)b—c) 2> b(Ve- Va)’.

cye

Denote /¢ = m, /a— Vb= a > 0,Vb— /c = 8> 0. The inequality above becomes
2(a+ B+ 2m)*(a+ B)® + 208(2m + B)(2m + 26 + ) >

> (m+ B)2(a+ B)* + m*a® + (m + o + B)° .

This last one can be reduced to Mm? + Nm 4+ P > 0 where
M =8(a+p)*+8aB(a+B)2+ 2+ 32>0.

N =8(c+ B8)% + 4aB(a + 38) — 2B(a + B)2 — 2(a + B)B? > 0.
P =2(a+B)*+2aB8%2(26 + @) —28%(a+ B)? > 0.

We are done. The equality holds for a = b = ¢ = g and a =b=1,c= 0 up to
permutation.

\Y%

Problem 62. Let a,b,c be non-negative real numbers such that a? + b + ¢2 = 3.

Prove that
a b &
<1

b+2+c+2+a+2_ )

(Vasile Cirtoaje)
SOLUTION. After expanding, the inequality gets a simpler form

ab? + bc? + ca? < 2 + abe.
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WLOG, suppose that b is the second greatest number in the set {a, b, c}, then
a(b—a)(b—c) <0 & a?b+ abc > ab? + ca?.
Therefore suffices to prove that
2>a’b+b® @ ba’ +cP) <20bB-0)<2e (b-1)%(b+2) >0,

which is obvious. Equality holds fora =b=c=1ora=0,b=1,c = V2 up to
permutation.
\Y%

Problem 63. Let a,b, ¢ be non-negative real numbers. Prove that

alb+c¢) blct+a)  cla+b)
> 2.
a? + be b2+ca+02-l—azb_2

(Pham Kim Hung)
SoLUTION. The inequality is equivalent to

Za(b + ¢)(b% + ca)(c? + ab) > 2(a® + be) (b? + ca)(c? + ab)

cyc
& Y a'(B* +) +3abe) a’(b+c) > 4’2 +2 P +2abc )y a® ()
cyc cyc cyc cyc
According to the identity
(a=b)*(b—c)*(c—a)’
= 204(172 + )+ 2ach a*(b+c) -2 Z a®b® — 6a’b?c? — 2ach ad.
cyc cyc cye cyc
we can rewrite (%) as

(@=b)*(b—0)*(c—a)® + 22’6’ +abc Y a*(b+c) = 0.

sym
which is obvious. Equality holds for a = b, ¢ = 0 or permutations.

Comment. According to the same identity, we can prove the following inequality

(notice that without this identity, these problems are really hard)
* Let a,b, c be three non-negative real numbers. Prove that

alb+c—a) blcta—10) c(az+b—c)>0
a? + 2bc b2 + 2ca c4+2b T

\%
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Problem 64. Suppose that a,b,c are the side lengths of a triangle. Prove that

a N b n c +ab+bc+ca<§
b+c at+c a+b a24+b24c%2 2

SoLuTION. With the following identities

2a (a—b)
=3+ i Z(a+c)(b+c)

cyc

2(ab+bc+ca) (a—b)2+(b—c)?+(c—a)?
a2+ b2+ 82 4 b2 4 2

2 —

b

we can transform our inequality to S,(b— ¢)? + Sp(a — ¢)? + Se(a — b)%2 > 0 where

S =1— a? + b + ¢? g = _a2+b2+c2 _ _a2+b2+c2
e (a+b)ate)™’ ™ (b+a)b+c) (c+a)(c+b)
WLOG, suppose that a > b > c. Then, clearly, S > 0. Smce a,b, c are the side
. a— b
lengths of a triangle, we get that a < b+ ¢ and Z - _2 Moreover
a-b~c T a+c
s _a(b+c-—a)+c(b—c)> e(b—c¢)
P T T @b+ T (@+bb+o’
a(b+c—a)+blc—b) blc—b)
Se= > ;
(a+c)(c+b) = (a+c)(c+b)

so we can conclude that

> Salb—0)? 2 a-b)ﬁ(b—2 s,,+sc)

cyce

(a—b)? b2c(b—c) cb(c —b)
2 ((a 006+ (a +c)(c+b))

_(a—b)?%(b—c)b b a+b
 (a+b)(b+0) (c a—l—c)zo'

Equality holds for a = b = c or a = b, ¢ = 0 or permutations.

\Y

Problem 65. Let a,b, c be non-negative real numbers. Prove that

1 1 1 6
+ + > .
Val+be VB2+ce VE+ab T a+b+c

(Pham Kim Hung)
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SOLUTION. First solution. Taking into account problem 15, we have

1 1 1 9 6
+ + > 2 :
Va2 +be VB2 +eca VAE+ab T Val+be+vVhiita+VE+ab T atbtc

Second solution. Applying AM-GM inequality, directly we have

1 1 1 3
+ + > :
va?+be Vb +ca Ve2+ab T §/(a? +be)(b? + ca)(c? + ab)

[t remains to prove that if a + b+ ¢ = 2 then (a? + bc)(b? + ca)(c? + ab) < 1. WLOG,

we may assume that a > b > ¢, then
2
(a+§) >a?+bc;

(62 + & + ab+ac)” > 4(b? + ca)(* + ab) ;
Moreover,
4 (a+ g) B+ +ab+ac)—(a+b+c)?
= —(a —b)*(a +b) + (ac® — 3a%c) + (* — bc? —b%c) < 0.

We conclude that

(a® 4 be)(b? + ca)(c? + ab) < (a+2) (b2+c2+ab+ac) (a+b+c) =1.

64

This ends the proof. Equality holds for a = b, ¢ = 0 or permutation.

>

\Y

Problem 66. Let a,b, ¢ be positive real numbers. Prove that
a® b e at+b+c
+ + — > .
202 —ab+ 262 202 —bc+2c?  2¢ — ca + 2a? 3
(Nguyen Viet Anh)

SOLUTION. Rewrite the inequality form as follows

al 1 a(a? + ab ~ 2b?)
czyc2a2—ab+2b2 - §§“‘§y£ 3(2a2 — ab + 2b2)

a(2a +b) 1
=2 _(@=b) (3(2a2 —ab+2b%) §)

cyc

__Z(a— (2b—a)
o 2a2 —ab 4+ 2b2 7
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We may assume that a = max{a, b, c}. If {%, 2, g} € (0,2], we are done. Otherwise,
c

we need to consider some subcases

(i). The first case. a > b > c. If a > 2b then
a3 S Q. b3
202 —ab+2b%2 — 2" 2b2 —bc+ 2¢2
a3 b Poss
= 2a? — ab 4 2b2 + 2b2 — be+ 2¢? + 2¢%2 — ca + 2a?
Otherwise, b > 2¢. Then
al b A a
51z T 7t 53 7 2
202 —ab+ 202 2b%2 — bc+ 2c 2¢2 —ca+ 2a 3

b
(#i). The second case. Ifa > ¢ =2 b, then 0 < - <1,0< < < 1. We may assume
that a > 2b, then

S

a a
> -
202 —ab+2b%2 ~ 2 (1)
We will prove now that
b® b ¢
> 2
262 —bc+2¢2 —3 9 (2)

Indeed, this inequality is equivalent to
f(e) = 2¢® — 7c*b + 5¢b% + 3b% > 0.

With the condition ¢ > b, f'(c) = 6¢® — 14cb + 5b® has exactly one root ¢y =

7+V19)b
(_'"16_‘/_)__, therefore f(c) > f(co) > 0. (2) is proved.
Similarly, we will prove that
a c 4c
E+202_m+2a2—3 (3)

Indeed, this inequality is equivalent to
6a® — 19a%c + 14ac® + 26 > 0,

which is true due AM-GM inequality. Adding inequalities (1), (2) and (3), we get
the desired result. Equality holds fora = b =c.

\Y

Problem 67. Prove that for all positive real numbers a, b, c

2 2 4 4
@ B C gefaltiad
b c a 3
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SoLuTION. Applying Holder inequality, we obtain

2 2 2 2 2 )
a—+—+-— a_+b_+ﬁ (a2b2+b2c2+c2a2) > (e + 0% + )%
b c a b c a

Let z = a2,y = b?, 2 = 2. It remains to prove that

(z+y+2)° > 3(zy +yz + 22)/3(22 + 32 + 22).

(e+y+2)?* _ 3V3(?+y?+2%)

zy+yz+tzzx ~ z+y+z
(=) + @y —2*+ (2 — =) 3((z—9)?+ (y—2)*+ (2 — z)?)
& 2
2(zy +yz + 22) (:v+y+z)(:v+y+z+\/3(:c2+y2+z2))

& blay+yz+zz) < (z+y+2) (:1:+y+z-I-\/3(:1:2+y2 +22))
which is obvious. Equality holds for £ = y = z or equivalently a = b= c.
Comment. By a similar approach, we can prove the following inequality

* Let a,b, c be positive real numbers. Prove that

a? N b? N A >§ Jfat + b4+ A
b+ec c+a a+bT 2 3 )

Moreover, an extended result for four numbers is also true

* Let a,b, c,d be positive real numbers. Prove that

a? ¥ 2  d?
b —+ —+ — > 22Vl + b+ A+ 4,
b ¢ d a
\%
Problem 68. Let a,b, c be non-negative real numbers with sum 3. Prove that
(a+b%)(b+ ) (c+ a?) < 13 4 abe.
(Pham Kim Hung)
SorLuTIioN. We will first prove that if a > b > ¢ then
(a+ b2)(b+ ?)(c+ a?) > (a® + b)(b? + ¢)(¢® + a).

Indeed, just notice that

Zasb— Z:ab3 =(a+b+c)(a=b)(b—c)(a—c),

cyc cyc
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> a?b* =" a*? = (ab+ be + ca)(a — b)(b — ¢)(c —a).

cyc cye
Therefore
[T@+6®) —]J@*+b) = (@a=b)(b-)(a—¢) (Za—-Zab) >0
cyc cyc cyc cyc
because
Za—Zab——((a+b+c) — 3(ab + be + ca)) Z(a—- b)2 > 0.
cyc cyc

According to this result, we see that it’s enough to consider the case a > b > c. Let

flab,c) = (a+ b)) (b+c*)(c+a®) —abe= D a®b+ ) a’b® +a’’c.

cye cye

We will prove that f(a,b,c) < f(a + ¢,b,0). Indeed

f(a,b,¢) = f(a +¢,b,0) =Za3b+za2b3 +a%?c? — (a +¢)3b — (a + )%

. cye cye
= bdc+ Ba + b2 + 2ad + a?b? — 3abe — 3ac?b — 2ach® — HE.
Since a > b > ¢, we get that b3c < ach, c3a < ac?b, b2c® < 2b3. Finally
Fa® + a*b*c? < 3a%be
is true because
3a%be — c?a® — a* b ? > bea®(3 — a — be) = bea’(b+ ¢ — be) > 0.

This inequalities imply f(a,b,¢) < f(a + ¢, b,0) = (¢ + ¢)%b(a + ¢ + b?). It remains to
prove that if z,y > 0 and 2+ y = 3 (z = a + ¢,y = b) then z?y(z 4 y?) < 13.

Indeed, the left-hand expression, changed to a function of z, becomes
f(z) = (9 + 2* — 52)(3z% — 2°).

Applying AM-GM inequality, we deduce that
f(z) < %(—:1:3 + 422 — 5z + 9)2,

and according to AM-GM inequality again, we get

—z3 4+ 42° 5:1:+9——(:1:—1)2(2—-:1:)+7<7+247




9.0. Problems and Solutions 207

Thus, we conclude that

2
f(z) si(u%) < 13.

Comment. With the same approach, we can prove the following stronger results

% Let a,b, c be non-negative real numbers with sum 3. Prove that

(a+ b?)(b+ *)(c+a?) €13 + abe(l — 2abce).

* Let a,b, c be non-negative real numbers with sum 3. Prove that

(a+b%)(b+ *)(c+a?) < 13.

\%

Problem 69. Let a,b, c be positive real numbers. Prove that
2 2 2
(a+b) (b+c) +(C+a) > 6.
c+ab  a2+bc b +ac
(Peter Scholze, Darij Grinberg)

SOLUTION. We have (a + b)? — 2(c? + ab) = (a? — ¢?) + (* — ¢?), therefore

(a+b)? (b+c)?  (c+a)? —6-——2 (a®? — %) + (a® — ¢?)

+ab  at+bc b2+ca g a? + be
1 1 (a —b)%S

_ 2 2 _ _N\le—9)0
=S (i ) 2w

where M = (a? -+ bc)(b? + ca)(c? + ab) and S,, Sy, S, are determined from

So = (b+c)(b+ c—a)(a® + be),
Sy = (c+a)(c+a—b)(b* +ac),
S, = (a+b)(a+b—)(c? +ab).

)2 2
Now suppose that a > b > ¢. Certainly, S, > 0 and EZ — 32 > %2—, so we have

Z S.(b—¢)? > (a—¢)2 S, + (b—©)*S,

cyc

a — ¢)? c—b)%(a? b%S,
=(c—b)2(éc_bgzsb+sa) p (ot St ).
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On the other hand

a?Sy, + b2S, = a?(a + ¢)(a+ ¢ — b)(b% + ac) + b*(b+¢)(b+ ¢ — a)(a® + bc)
> a(a—b) (a*(¥* +ac) — b*(b% + ac) )> 0.

We are done. Equality occurs if a = b= c or a = b, ¢ = 0 or permutations.
\Y%

Problem 70. Find the mazimum value of k = k(n) for which the following inequality

s true for all real numbers x,,x9, ..., Ty
3+ (1 2) o (oot 20)? > k(e g+ 202

(Le Hong Quy)

SOLUTION. Let a;,asq,...,a, be positive real numbers, then

1
a1yi + o Y2 + 2y1y2 > 0

1
asys + - Y2+ 2y9y3 > 0

1
An-1¥2_1 + —- Y2 4 2yn_19n > 0.
n

Adding up these results, we obtain

n—1
U242 w20 ()

i=1

1 1
aly]2 + (; + ag) y% + ...+ (a ; + an_l) y,2,_1 +
"

Qn-—1

We will choose n numbers a1, as, ...,a, such that

1
ay=—+4ag=..= —1.
ai Gn-1
With some calculations, we find out ax = M where a = . Inserting
sin(ka) 2n -1

these in (x), we conclude

n n—1
2cosa (Z yﬁ) +2 (Z ykyk+1) +ya 20
k=1

k=1

n n—1
& 2(14cosa) (Z 2) > yf + Z(yk - yk+1)2-
k=1

k=1
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Setting yx = 1 + z2 + ... + zx Yk € {1,2,...,n}, we obtain

o
flcos2 3 (e} +(zr+z) + o+ (@ o+ +2,)) 2l 422 4 422,

The best (greatest) value of k is _r with equality for
4cos® iy
. 2km . 2(k—= D)
= (=1)* ArT T
o = (1) (S’“2n+1 M )

Comment. In example 6.2.4, we proved (by Cauchy-Schwarz inequality)

1
22+ (z + @)+ (T F T+ +20) € ———— (2] + 25+ 3D
4sm m
What a strange and interesting coincidence! One problem asks for the maximum
value, the other problem asks for the minimum value, one problem is based on the

AM-GM inequality and the other on Cauchy-2Schwarz inequality, but both come
s

2n +1°

to two similar results, with the appearance of

\%

Problem 71. Let ay,asq, ..., a, be positive real numbers with sum n. Prove that

_1_ + i Lo _1_ —n Z 8(n - 1)(1 —2'0,10,2...0,.,-,,).
ai a2 an n

(Pham Kim Hung)

SoLUTION. We prove this inequality by induction. If n = 2, the problem is obvious

1 1
—+———2>2(1—0102) & (l—alag) >0
a; 43

Let’s consider the problem for n + 1 numbers with the supposition that it is true for

n numbers. We assume that a; < ag < ... € ap < anyy. For each i € {1,2,...,n}, we
a]+a2+...+an . . . .
< 1. Applying the inductive hypothesis

denote b; = %, where t =

n
for by, bg, ..., b,, we obtain
1 1 1
——-n> - .b
b1+b2+ +bn n > c(1l — byby...by,),

for all ¢ < 8(nn_-2—1) Replacing b; with 9—1', we deduce that

_n+za—z>c(1——l—[a,)®z +thrl (Ha,) % —(*)

i=1 i=1 i=1
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8
For n 4+ 1 numbers, we need to prove that, if k = —l——, then
(n+1)2
'n.+11 n+l n 1 n 1
—-n—1+ —>kl1- a; | & — + (kan+1 a; + >n+1+k

Let ¢ = (kap41)t" 1. According to AM-GM inequality, we deduce that

gt < (2o T -1,
Int1t = ( n+1 )
hence ¢ < kt < k = &n < 8 — 1). On the other hand, notice that (x) holds
(n+1)2 n?
for all ¢ £ —8(1—2_—1) It also holds for ¢ = ¢, so we have
n

n 1 n n .
Z g;' + (ka‘u+1) (H ai) Z "t‘ + kau+1t .

i=1 i=1

It remains to prove that

th' + kan+1tn + >n+ 14k

Anit1

Replacing a,41 with n + 1 — nt, we obtain an equivalent inequality

1
f;+n_+_1.__nz—(n+1) >k (g™t — (n +1)E" +1)
n(n+1) 8n

> .
t(n+1—nt)—(n+1)2(1+2t+ + ™)

(n4+1)°

. We are done.
4n

which is ocbvious because t < 1 and t(n + 1 —nt) <
\Y

Problem 72. Let z,y, z be non-negative real numbers with sum 1. Prove that

Vet +y+224Vz+22>2
(Phan Thanh Nam)

SOLUTION. Notice that if a, b, ¢, d are non-negative real numbers such that a+b = ¢c+d
and |a — b| < |c—d|, then we have

Va+ Vb > e+ Vd (%)
Indeed, since (a +b)2 — (@ — b)2 > (c+ d)? — (¢ — d)?, we have ab > cd, therefore

a+b+2Vab>c+d+2Ved = a4+ Vb > o+ V.
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According to (x), we deduce that

Ve+ 2 +Vy+222 (2 +y) +Vz +y2

-

We conclude that

Ve+r 2 +Vy+22+Vz+222> (@ +y)+ V2 + 92 + V2 + 22
> 24y +1/(VE+ Va2 + (o +y)?
=1l—-24++4d2+(1—-2)2=2.

. 1 .
Equality holds for x =y = 2 = 3 orz= 1,y = z = 0 or permutations.

\%

Problem 73. Let a,b, ¢ be positive real numbers with sum 3. Prove that
1 1 1

> 1.
2+ a?b? + 2+ b2c? + 2+ c?a® ~ L
(Pham Kim Hung)
SOLUTION. According to AM-GM inequality, we have
1 1 a’b? 1 a’b? 1 a¥/3p3/3
2+a2? 2 2(2+a??) T2 g¥az 2 6

We deduce that
1 3 1 4/33.4/3
- > __Z /3pd/
%;2+a2b2 =3 62“

cyce

and it remains to prove that 5~ a*/ 3p4/3 < 3. By AM-GM inequality again, we have

cyce
3 Za4/3b4/3 —3 Zab\Va—b < Zab(a +b+1) = 4(ab+ be + ca) — 3abe.
cyc cyc cyc

Recalling a familiar result (a + b — ¢)(b+ ¢— a)(c+ a — b) < abe, we have
(83— 2a)(3 — 2b)(3 —2¢) < abe & 4(ab+bc+ ca) — 3abe £ 9.

We are done. The equality holds fora =b=c¢=1.

Comment. The following general result is proposed by Gabriel Dospinescu and Vasile

Cirtoaje

% Suppose that a,b, ¢ are three non-negative real numbers adding up to 3. Find

the mazimum value of k for which the following inequality is true

(ab)F + (be)* + (ca)* < 3.
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Let’s examine this problem. It is obviously wrong if k& < 0. It is obviously true if

0 < k < 1. Consider now the case k > 2. With the supposition a > b > ¢, we have

2k
(ab)* + (bc)* + (ca)f < a*(b+ c)F =a*(3 - a)F < (%) .

a—2b

f1<k<2, welett=a+bandu: thén a = t + u,b =t — u. Denote

flw) = F(E+u)f+t—wr) +@ —?)F
then its derivative is
’ — 1 1 2u
fl(u) = kck(t2 "“2)k ! ((t_u)k—l - (t + u)*-1 - ZF) .

Applying Lagrange theorem for the function g(z) = z!=* we deduce that there

exists a real number g € [t — u,t + u] such that

1 1 _2u(k—1)
(t—w)-1  (t+u)-1

to>t—u>cand k <2, so we get f(u) <0 by

1 B 1 _ 2u(k—1) < 2u
(t—u)k-1  (t+u)k? tk =k

Thus f(u) < f(0). It remains to consider the case a = b > 1 > ¢. Denote
ha) = 2a%(3 — 2a)* + a?*,
then we have

k
h'(a) = 2kak'1(3 - 2a)k_] (3 —4a + -(3—_(;(1_)]0—_1) .

With the condition 0 < a < -g—,
klna — (k —1)In(3 — 2a) = In(4a — 3).

the equation h’(a) = 0 has only solutions a > %, and

We denote ¢(a) = klna — (k — 1) In(3 — 2a) — In(4a — 3), then

k—1)a 4a

@) = k4L - :

aq'(a) + 3—a 4a, — 3

Notice that both 4 and — are increasing functions, therefore the equation

3—a 4a —3
ag’(a) = 0 has no more than one root, therefore the function ¢(a) = 0 has no more

than two roots and therefore the equation h’(a) = 0 has no more than two roots.
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Because h'(1) = 0 and ¢’(1) =k + 2(k — 1) —4 = 3k — 6 < 0, we easily deduce from

the variance table that
h(a) < max{h(l),h (g)} .

We conclude that for all positive real numbers k then

(ab)® + (bc)k 4—@ay<:nmx{3 (g)zk},

and equality is reached for every k. Therefore the maximum constant k that we are
In3

lOOkll’lg fOI' 1S 2(11’13——11’12)

\%

Problem 74. Consider the positive real constants m,n, such that 3n? > m?. For
real numbers a, b, c such that a + b+ ¢ = m,a® + b? + c? = n?, find the mazimum and

minimum of
P = d?’b+b%c+ a.

(Le Trung Kien, Vo Quoc Ba Can)

™m . "
SOLUTION. Let a =z + b=y + c=z+ T From the given conditions, we get

3 ’
3n? — m? ,
that z +y 4+ 2 =0 and z? + y? + 2% = — The expression P becomes
m3
P=z2y+y22+z2z+7.

Notice that

2
2 18zxy
Z (31" 372 —m2  3n2 — m2 —1)

cyc

2
18 . 324 ) 5
=3+'——2 3 (Z‘E) (3n2 —m2)2 Z

cye

o T () e

cye cye
2
_ _uveE 2,2 _ 4
_3+(3n2—m2)2 Z:z:y 54(3n2—m2) Z:z:y
cyc cyc

, 1, 5 o 3n? —m?
Since z+y+2 = 0, we get :z;y+yz+z:z:=—§(a: +yc+2 )2——6—.Therefore

- 2 - 2_(3n2_m2)2
Z:z:y = Za:y —2:z:yzZ:z:— Za:y ="

cyce cye cyc cye
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and we get

or in other words,

If we choose

V2(3n2 —m?) 2rm V2(3n2—m?) Am  /2(3n%*—m?) 8

z = 3 cos o=,y = 3 Co8 5=, 2 = 3 cos o=,
then ) /a2 o\ 3/2 .

P=§( —— ) e
So

9 2

Similarly, by considering the expression

2
. 2 182y
> (dx\/ 32 —m? 32 T 1) ’

cyc

2 [(3n2 —m2\¥? ;3
maxP:—(————-) + —

we easily conclude that
2 (3n2 —m2\*? m3
min P = -3 (——2——) it
The problem is completely solved.
\Y
Problem 75. Suppose that a,b,c are three positive real numbers verifying

1 1 1
(a+b+c) ((—z-+'5+"c-) =13.

Find the minimum and mazimum values of the expression

p_Ltb4e

abe

(Pham Kim Hung)

SoLUTION. Denote

b 2 be
=B=Z%;y=}:5;m= %E; n=3 —;

cye cyc cyc cyc
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We have z + y = 10 and

a® b?
333:3(m+n)+6+zb—3 VP =3mtn) +64+ ) —
cyc

cyc

The identities above yield that

1,1 1
3 3 __ 3 3 3
2 +y° = (@®+b +c)(§+§+—3)+6(m+n)+9.

We also have

B al b3 s .3, s/l 1 1
mn~—3+zb—3+ZE:(a +b +c) §+b—3+z_§

cyc cye

and
a b ¢ b ¢ a
zy=|7+-+-)|-+7+-)=3+m+n
b ¢ a a b ¢

thus we infer that
10° - 30(3+ m+n) = mn+6(m+n)+9

& 10° — 99 = mn + 36(m +n)

80 ™, n are two positive roots of the quadratic
f(t) = t* — (zy — 3)t + (1009 — 36zy).

Letting now r = zy, we can determine

2m = (zy — 3) £ 1/ (zy — 3)2 — 4(1009 — 36zy)

Consider the function g(r) = r — 3 — v/72 + 138r — 4027 for 0 < r < 25. Notice that

_ 2r + 138 <
2412 + 138r — 4027

gr)=1

so we conclude 11—2v/3 < m < 1142v/3, with equality for z—y = (a—b)(b—c)(c—a) =
0. The minimum of m is 11 —2+/3, attained fora = b = (2 + \/§) ¢ up to permutation.
The maximum of m is 11 + 2v/3, attained for a = b = (2 - \/5) ¢ up to permutation.

\%

Problem 76. Prove that for all positive real numbers a,b, ¢, d, e,

at+bbtcct+ddte et <a+b+c b+c+d-c+d+e_d+e+a.e+a+b
2 2 2 2 2 — 3 3 3 3 3 '
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SoLuTION. We will first prove that for all a,b >0 anda+b <1

(- G-z () e

Indeed, this result can be rewritten in the following form

11 1> 4 4 o _1__ 4 >l
ab a b7 (a+b)? a+b ab (a+b)?2 T a
(a=b)?® _ (a=b)

ab(a + b)? ~ ab(a +b)

L
b a-+b

e (@—b)2(1-a=b)>0.

Return now to the original problem. We may assume that a+b+c+d+e =1, then

a+b a+b+c a+b+c 35 1 35
- =N —_— > — e —_ > —,
H( 2 )SH( 3 ) g( d+te )—25 H(a+b 1)—25

cyc cyc cye

According to (x), we deduce that

2 2
L 1 > - )20
d+e a+b d+e+a+b 1—-c

This result shows that

0 (a1 2 O (1) = (2%):

cye

The function f(z) = In(1 + z) — In(1 — ) is convex because its second derivative is

f'(z) = (1 ;.’1:)2 + (1—2z)2

S (3)-on(3) -T2 25

cyce

> 0, therefore Jensen inequality claims that

We are done and the equality holds fora =b=c=d =e.
Comment. By the same method, we can prove the following general result

* Let ay,aq,...,a9n41 be positive real numbers. For each k € {1,2,...,2n+ 1}, we
define numbers Sk, P as follow

S, = Zkt1 +agpo+ ... +0pn Qg1 + g2+ .. + Qppnt
k= , Pp=

n n+1

)

with agyon41 = ag. Prove that
5182+ 8Son 1 KPPy Py,

\%
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Problem 77. Let a,b,c be non-negative real numbers. Prove that

at b4 A a+b+c
> .
a3+b3+b3+c3+c3+a3_ 2
SOLUTION. Notice that
4 _ 2 2 2 12
2a _a_3(a b)z(a—b) ala +ab‘+b)_§ =2li + ab b(a—b)z.
a’ + b 2 ad® + b? 2 3(ad + b®)
Therefore the inequality can be transformed to
Sa(b—c)? + Sp(a — )2 + Se(a —b)2 >0,
in which the coefficients S,, Sy, S, are
3c? + be — b2 3a® +ca—c* 3b% + ab —a?
So=—m3—— ; So=———5— ; Sc= —3 33
b + 3 3+ as a3+ b3
The first case. If a > b > ¢, then clearly Sp > 0 and
3a2 + ca—c?  2(3V? +ab—a?) 3a? 2a?
Ny S = bl > 0.
Sp +25e 3+ a3 a3 + b3 ~“B+ad a3+ =
a?(3a? + ca — 02) 2b2(3¢? + bc — b?) 3a* 2b*
a? 28, = ( > - > 0.
S +26°5a A+ ad b3+ &8 —A3A+ad A+~

So we conclude that

23 Sa(b—c)? > (S +25.)(a — b)? + (b—o)* (25 + bzs) > 0.

cyc
The second case. If ¢ > b > a, then clearly S,, S, > 0 and

3c? +bc—b?  2(3a% 4+ ca —c?) S 3c? + be 2c*

Sa + 25y = > 0.
R S+ad T B+S d+S T
2 " LY 2 \ — ;2' 2 .
5, 4125, = 3° +ub—w®  2(3e .+ ca — e ) > 8b 2c? >0,
a® + b3 8 + b 02+ 8 & +aP

We oonclude that

AE 5a(b—€)® > (8a +28p)(b—c)* + (25 + SBc)(a ~ b)® > 0.

oyc

The proof is finished and Ithe equality holds fore =b = ¢
v
Problem 78. Let a,b,c be positive real numbers. Prove that

\/ P [ y o Vb

a? @b + b2 1y b2 +-be 4 2 + V&? 1 ca +. 02 - V3
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(Le Trung Kien)
SOLUTION. Let 22 = a,y? = b and 22 = ¢. The inequality becomes
z® + y® 4 23 S Z +y+z
\/:,;4 + 2242 + 34 \/y“ + 9222+ 20 VA 4222 p 2t T V3o

Squaring both sides, we obtain an equivalent form

2393 1
s 4+ 2 xy |.
Zac4+z2y 24y 2 Vet + 22y +yh) (v + 4222 + 24) =3 (Z 2. y)

cye cye cyc cyc

6_ .86

. z Y . .
Notice that = 0, so the above inequality can be transformed to
CX:yc 74 + z2y2 + y4

> 62y >lz 2 4?4 day — 3(z8 +1°)
\/(1.4 + z2y2? + y4)(y4 + 9222 + 24) =92 4 + z2y2? + gyt

cye cyce

o Z 623y3 > Z 62°y® — (z—y) (= + y)2.
e V(@ + 222+ ) (Yt +y22 + 24) T ot +2?y? + 4
Then, the following sequences
23y Y323 233
Vot + 222 +yt VUi +y222 + 24" /24 I+ 2222 + 28

cye

1 1 1
(\/354 +a22y? + g4’ \/y4+y222+z4’\/z4+z2x2+14) '

are monotone in the opposite order, so Rearrangement inequality shows that

Yy z°y
> .
Z VEE+ 222+ ) + 222 + 24 Z a4 + 2292 + ¢

cye BuMm.
This ends ithe proof. Equality hdlds for a = b =
v

Problem 79. Lei a,b,c be mon-megative real numibers with sum 2. Prove thet

b + be 4 ca <
L4e®  L4e?2 L1462~

(Pham Kim Hung)
SoLumioN. We denote z = ab 4 bic+ca and p = whe According to the identities
A = o — b)Y~ e} e — ) = dz?(1 — ) 4 49— B)p— 27p°,
B="T)"a*la—b)ja—¢) = 12p+4(1L — z)(4 — z),

oy

I —
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we can rewrite our inequality as
(1-2)5-2z4+2%)+ (6z—2p—2p°> >0
o 6A+ g(l +9z)B + (1 — z)*(365 — 147z) > 0,
which 1s obvious because z < % The equality holds for a = b = c.
\Y

Problem 80. Suppose that a;,as, ..., a, are non-negative real numbers which add up

to n. Find the minimum of the expression

1 1 1
S=a?+a+..+a%+aay...0, (—+—+...+—).
ay (%)) apn

(Pham Kim Hung)

SoLuTION. Consider the following function

1 1 1
F= f(al,ag,...,an) = a% + a% + ...+ a?l + ayas...ap, (— + —+ ..+ —) .
a1 Gz Gn

Surprisingly, these exceptional identities will help

f(al,am .y lp) — f(O,al + ag,a3, ..., ap)

1 1 1
= a1a2 (a3a4...an (—— +—4+...+ —) — 2)
az a4 a,

a1 +az ai+as
$a3$ .y ap

f(al’a2""’an)—f ( 2 y 2
= (_‘7'_}____‘7'_2_)_2_ (2 — a304...0y, (i + i + ...+ -1—))
a3

4 a4 Oy,

Therefore at least one of the following inequalities must be true

FZf(07a17a27"'7an) (*) ) F_>_f(al—;a2$al—;a2’a37"'7an) (**) M

WLOG, we may assume a; > ag > ... > a,,. Consider the transformation

a.+a. a; +a.
(ai,a’j)—’(12 .7’ 12 .7).

If | I] o > L < 2 then F decreases after each of these transformations.
k#1,5 k#i,5 Ok
1 1 1

If we have a; a;,...0;, _, (— +— 4.+

i1 ai, Qip_2

) < 2 after such transformations
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for every {i1,i2,-.-yin—2} C {1,2,...,n}, (%*) claims that the minimum of F is only
attained for n equal variables. In this case, we have min F' = 2n.

Otherwise, there exists a certain transformation for which

n—2 n—2 1
) E2)
k=1 k=1 %ix

According to (%), F only attains its minimum if the smallest element of the set

{a1,aq,...,a,} is equal to 0. In this case, we obtain
F = g(al,ag, ...,an_l) = a? + a% + ..+ ai_l + ai1as...05n1.

By the same approach, we can conclude that at least one of the following inequalities
will hold

g(a]_,GQ, “'1an—1) 2 g(07 ay + ag,as, ---’an—-l)

ay +az a1+ ag
g(a’11a21"'1an—1) Z g ( » @3, ...,an_l) )

2 7 2
and using the same reasoning for the function g, we deduce that g(a1, as, ..., an) attains
its minimum if and only if all numbers of the set {a1, as,...,a,_1} are equal together

or n — 2 numbers are equal and another is equal to 0. This fact claims that

, ‘ n? n? n \"!
mnin F' = min 2n’n—2’n—1+(n——1) .

Comment. The following result can be deduced as a part of the solution above

% Let ay,as,...,a, be non-negative real numbers with sume n. For all k € R,

2

. n
a? + a2 +... + a2 + kajas...a, > 1pin {n + kK, —3 } .

\%

Problem 81. Let z,y,z be positive real numbers satisfying 2xyz = 3z + 4y% + 522.

Find the minimum of the expression P = 3z + 2y + z.

(Pham Kim Hung)

SOLUTION. Let a = 3z,b = 2y, z = ¢ We then obtain
a+b+c=3z+2y+2, a®+3b% + 156 = abe.
According to the weighted AM-GM inequality, we have that

a+b+c> (22)Y2(3b)1/3(6¢)Y/8,
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a® + 3b% + 15¢° > (4a®)1/4(96%)/°(36c%)15/30 = (4a?)1/4(9b%)/3(36c2)%/12.
Multiplying the results above, we obtain
(a+ b+ c)(a® + 36% + 15¢%) > 36abc = a + b+ ¢ > 36.

So the minimum of 3z + 2y + z i1s 36, attained for x =y = z = 6.
Comment. 1. Let’s consider the following general result
* Let a,b,¢,z,y, z be positive real numbers verifying ax? + by? + c2*? = zy=.

a. Prove that there exists exactly one positive real number k for which

1 1 1 1
— + + —.
2Vk Vk+vktae VE+VEFL VE+VEFc

b. With this value of k, prove that

(VE+ VEk +a)(VE+ VE+b)(VE+ VE +¢)
z+y+z2 N/ .

SoLUTION. Part (a) is fairly simple. Consider the following function
f(k) = vk + vk + vk -
Vk+vktae VE+VEFL VE+VEk+e 2
Since f(k) is an increasing function of k, and, f(0) = ——1/2,k1_ingof(k) = 1, the

continuity of f claims that the equation f(k) = O has exactly one positive root.

To prove (b), we let m,n,p, my,n;,p; be positive real numbers such that
m+n+p=1,am; +bn; +cp; = 1.

By the weighted AM-GM inequality, we have

x4y +z> (:>
n )
o2

2 ami 22 cp1
2
ax? + +cz >( ) (—) (—) .
by my 11 Pi

The results above combine to show that

mm+-2am1 y'n +2bny ,,p-}- 2cpr

2 2 2
($ +y+ Z)(ai‘ +by” +cz ) mmnnppmaml bnlpipl :

We will choose six numbers m,n, p, m1,n1,p1 venifying the following conditions

e m+2am; =n+2bny =p+2¢p =1.
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z @ y? B 2_2
p'mi . pr
The second condition is equivalent to the existence of a real number [ such that

38
3 |

m_n_ Py

my ni P1
Replacing this relation into the first condition, we obtain
a 2 2 ¢ 2
— = -y, — = N5 — Ny, — = Py — Po.
g™ Mg T g TR TR
1 1 1 .
where my = —,ngy = —, p2 = —. So we infer that
m n P

N SO S 2Vl N 2v1 N 2Vl
mg mn2 p2 VIi+Vi+a VI+VT+b Vi+Vl+c
I 1 N 1 N 1 .

WVl VIi+Vitae VI+VI+b Vi+T+c

According to the definition of k, we must have ! = k. Therefore, we conclude

8l
Lyt z>m Mty Pt =y T Qlmon
r+y+z2m nop 1 n, P p—— 222

= % (x./l?+ \/k—Jr_a) (x/E-Jr m) (x/E-Jr \/k_'l‘c) .
with equality for
z mnp

y
n

T
m p  am?+bn? 4 cp?’

2. This problem can be presented in another form as follows

% Let a,b,c,x,y, z be positive real numbers verifying az? + by? + c2? = xyz.

a. Prove that there exists ezactly one positive number p such that
2 2 2
T+ Vitoa  T+viTgh  1+yiTpe |
b. With this value of yp, prove that
(1 + T+ ap)(1+ 1T+ pb)(1 + /T + pc)
” .
3. Although it can’t be denied that this general problem is helpful in creating par-

cty+z2>

ticular inequalities (for particular values of a, b, c), we agree that the initial problem,
created accidentally, not based on the general problem, is the most impressive (it has
interesting coeflicients 2, 3,4, 5,3,2,1 and the expression attains its minimum when
all variables a, b, ¢ are equal to 6).

\Y%
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Problem 82. Let a,b, ¢ be non-negative real numbers. Prove that
1L, 1 1 2v/2
VaZ +be VB2 +ca \/cfi—ab Vab+be+ca’
(Pham Kim Hung)

SOLUTION. First we may assume that a > b > ¢. Notice that
S S 22
VB2 +ca VE+ab T VB2t +ab+ac

so it suffices to prove that

1 2v2 S 2V2
VaZ+be VEEEXEZfabtac Vab+bc+ca

Let M =ab+bec+ ca and N = b? + ¢? + ab + ac, then
22  2v2  2V/2(¥ —be+ &)
vM VN VHN (VI +VN)
Clearly, N > M; N > 2(b*> —bc + ¢*) and M = ab + bc+ ca > bv/a? + be, so
2v/2(b? — be + &) < 2v2(b2 —be+ ) V2(b? —be+ c?)

VN (VI +VN) ~ VMN-2VM — MVN
ﬁ(bz—bc+c2) _\/bz—-bc--l—c2< 1

T bva? +bc- \2(b2 —be+ ) bVaEtbe T VaZibe

So we are dwone. There is no case of equality.
A%

Problem 83. Let a,b,c,d be positive real numbers with sum 4. Prove that

NS SURS SRS SR
5—abc H5—bcd 5-—cda 5—abc—

(Vasile Cirtoaje)
SOLUTION. Let z = abe, y = bed, ze= cda,t = dab. We need to prove that

1 (1—a)(z +2)
5—:1: 25—m>0@z —m)m+—2)>0

cye cyce cyc

64 .
By AM-GM inequality it’s easy to see that z + y = be(a+d) < o7 <3 Soifzx>y

then (1-2)(2+2) <(1~y)(2+y) and (5—2)(2+z) > (5 —v)(2+ y). According
to Chebyshev inequality, we obtain

(1 -2}z k2) 1
12, G-z)(z+2) < (Z(l‘x)(z”’)) (;(5—@(24—:1:))'

cyc cyce
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It remains to prove that

Z(l —z)(2+z)=8- Zabc-— z:azbzc2 >0.

cye cye

First Solution. Welet p=a 4 b,¢g = ab,r = c+d and s = cd, then p + r = 4 and

we need to prove that
A =sp+qr+s2(p? —2¢) + ¢*(r? — 25) < 8.

Denote
A= flg) = (" —28) +q(r = 26°) + sp + °p".

Since f(g) is a convex function of ¢, we deduce that

f(g) < max {f(O), f (%)} .

Similarly, if we consider A as a function of s, or A = g(s), we obtain

g9(s) < max {9(0),9 (%2) } :

These two results combined show that A is maximum if and only if one of the numbers
a,b,c,d equals 0 (case (1)) or a = b,c = d (case (2)). Case (1) can be proved easily.

In case (2), the inequality becomes
ac+ cfa+atdf + cta? <4
Let 8= ac, then 8 <1 and
a*ctcfata’c® +cta? = 2acta’c®(4—2ac) = —26°+46%+28 = 4+(4—2B)(6°—1) < 4.

This ends the proof. Equality holds fora =b=c=d = 1.

Second Solution. WLOG, suppose that a > b > ¢ > d. Let m = ot c,u . ; ¢
and t = m?, v = u? then we get
fla,be,d) =Y abe+ Y a?b? = g(v)
cye cye
where

9(v) = (t — v)(b+ d) + 2bdVE + (£ — v)2(b? + d?) + 26°d%(¢ + v).
Since t —v = ac > bd, we deduce that *

g'(v) = —(b+d) — 2(t — v)(b* + d?) + 2b°d?* < 0,
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which implies f(a,b,¢,d) < f(v/ac, b, y/ac,d). Now we repeat the procedure for the
first two variables (y/ac, b) and then again for the first and the third. Repeating these

procedures, and taking the limit, we conclude

f(a,b,¢,d) < f(o, 0y, 4 — 3x),

. 4 . . . .
for a certain a € [O, §] . The inequality f(c, o, o, 4 —3a) < 8 is equivalent to

o® 4+ 30%(4 —3a) +o® +30*(4 —3c)? < 8
& (a—1)*(7Ta* - 40® -3¢ —4a—-2) <0,
q
which is obvious because a € |0, 3 (and therefore 7a* — 402 — 3a? — 40— 2 < 0).
The proof is finished and the equality occurs ifa =b=c=d = 1.
Comment. By induction, we can prove the following result

% Suppose that n is a natural number greater than 3 and ay,aqs,...,a, are non-
negative real numbers with sum n. For each number k € {1,2,...,n} we denote
by = ayas...a5_10k41...0y. Prove that

S SRS SR
n4+1—-by n4+l—=by =~ n4+l-—b, ="

To prove it, we use induction for the following general inequality
1 1 1 n
+ ... <
kb Tkt TR, SEST

where k is a real number and k& > n + 1. Notice that the most difficult step in
solving this general problem is the proof of the case n = 4. For n = 4, the proof of
4 1 (k > 5) can be obtained similarly to the case k = 5.

<
z:k—abc—k

cyc

\Y

Problem 84. Let a,b, c be three arbitrary real numbers. Prove that

1 1 1 11
> .
2a—0F T @h=of [ Ze—a “ 1@ +0+)

(Pham Kim Hung)

SOLUTION. Denote z =2a — b,y = 2b— ¢,2 = 2¢ — a. We get

dx + 2y + 2 y+ 22+ dz+42z+y
a = = ,b: 7 ,C:—7'——,




Chapter 9. Problems and Solutions —

226
= a?+b2 4t = 2(“3+y+2)2;rm2 +y? 2
It remains to prove that for all z,y,2 € R
1, 1,1 11
e |
332 y2 22 - 2($+y+z)2,_|_$2 _I_yz 4_22

Certainly, we only need to consider the case z > y > 0 > z (and dismiss the case

z,y,2 > 0 or z,y,2 < 0). In fact, we need to prove
11

f(z,y,2) AP
z2) = — A — } — —
'Y 22 P2 T2 2z ty—2)2 2t 22

for all z,y, z > 0 (that means we have changed the sign of z). Consider two cases

(i). The first case. If 2 > =+ y, then it’s easy to check that

1 _#1(Bz2~-z—-y) zHy+z
z__—m_y-(f(m’yvz)_f(m’y’m'l'y))— M-N -22($+y)2

where
M=2>+y*+(z+y)* ; N=2+*+22+20z2—2—y)? ;

Since3z—z~—y>z+y+22(z+y)2> M and 522 > N, it follows that
1 1 11

z,9,2) 2 flz,y,z2+y) = =+ =+ — ]

f(z,y ) f( Yy y) 72 Y2 (:2:+y)2 2(:2:2+y2+(.'2:+y)2)

Notice that
(i+i+—1— (a:2+y2+xy)——
22y (z+y)? 4
2 2z 22 Fzy+y? 19
:_2+y_2+_+g tay+y” 19
y: 2?2y oz (z + y)? 4

Therefore f(z,y,z + y) > 0 and we are done.
(#i). The second case. If x +y > z, setting t = /Ty we have
1 11

2
17 Z t’t’ = 5 o .
f@yz) 2 ftt2)=5+23 22 + 22 + (2t — 2)?

1
WLOG, assume that z =1, then ¢t < 5" After expanding, the problem becomes
f(&) =5t —4t® + 612 — 8t +3 > 0.

, 1
Since t < o fr(t) = 20> —12¢2 +12t — 8 < (203 — 10t2) + (12t — 6) < 0 and therefore

we can conclude that
1
0> f (5) 031255 0,
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Comment. The best constant k for which the following inequality

1 1 1 k
: : >
a0 Bt @ TN @A+ D)

. 6 6
is true for all ¢,b,c€ Ris k = min g(m)=10m2+—7—1——-8:1: + 23.
0<z<1/2 z x

Afrer some calculations, we find this value to be approximately 11.6075.
\Y%

Problem 85. Let a,b, ¢ be positive real numbers. Consider the following inequality

(a). Prove that (%) is true for k = 2.
(b). Prove that (x) is not true for k =3 but true for k =3 and a,b, c such that
a®b® + b3 + Sa® > abe(a® + b3 + A).
(c). For which value of k is () true for all positive real numbers a,b,c?
° (Pham Kim Hung)
SoLuTION. (a). For k = 2, we can assume that 3~ a® = 3 without loss of generality.

cyce

ab . .
The inequality > — > 3 is equivalent to
c

cyc

ab 2>9 @B 2 (2,2 _5) >0
Do) 20e X gzie ) gty )20

cyc cyc cyc
which is obvious. Equality holds fora =b=c.
(b). If k = 3, we let a = b= 0.8 and ¢ = V/1.976. Then (x) is not true. Now, with the
condition a3b® 4 b3c® + 2a® > abe(a® + b + %), (x) becomes true. Indeed, according

to AM-GM inequality, with the supposition that 5 a® = 3, we obtain

cyc
(Za) (ZaQ) =3+) a’(b+c)=) (a®b+b'a+1)>3) ab
cye cyc cyc cyc cyc

= abc (Z a + Zab(a + b)) > 3abe (Z ab) .

cyc cye cyce
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Because abc 3" a® < ¥~ a®b®, we deduce that

cyc cyc

abe (Z ab(a + b)) +) _a®® > 3abe (Z ab)

cyc cyc cyce

= (Z ab) (Zazbz) > 3abe (Z ab) =Y a’b? > 3abe = Zy:% > 3.

cyc cyc cyc cyc

We are done. Equality holds for a =b =c.

(c). Consider that a, b, ¢ are positive real numbers verifying (normalization)

Let’s find the maximum of the expression

S=a*4+bF+ & for k> 0.

b b
Let z = a—,y = —c,z = EE, then z + y + 2 =3 and § = ¥_ (zy)*/2. From a known
C aQ cye

result (see one of the previous problems)

3k
S < max{B, —} .
2k

It’s easy to conclude that (x) is true for all positive real numbers a, b,é if and only if

k < -——— = 2.709511... < 3 (including case k < 0 of course).
v

Problem 86. Let a,b, ¢ be non-negative real numbers. Prove that

1 1 1 4
+ + > i
Vida?2 +bec VA2 Yca VAE+ab a+bitec

(Pham Kim Hung)

SoLUTION. First Solution. We denote

1
S=Z\/-4&2—W ; P =) (b+c)*(4a® +be).

cyc cyc

According to Hélder inequality, we deduce that

S-S-P>(a+b+c)’
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So it’s enough to prove that (a + b + ¢)® > 2P. Since

P= Za"(b +c) + 7‘L7a3(b2 + ) + 24achab,

eyc cye cyce
(a+btc) = Z a®+5 Z a*(b+¢)+10 Z a*(b* + ) + 20abcz a? + 30abcz ab,
cyc cye cyce cyc cye

the inequality (a + b+ ¢)® > 2P is equivalent to (after reducing similar terms)
Z a® 43 Za4 (b+c)+ 20acha2 > 42 a3 + )+ 18abcz ab.
cyce cyc cyc cyc cyc
This last inequality can be deduced from the following results

18acha2 > 18abey _ ab,

cyc cyc

Za5 + abc‘LTa2 > Za"(b + ¢),

cye cyc cyc

4y at(b+c) >4 P+ ).

cyc cyce
We are done. The equality holds for a = b, ¢ = 0 or permutations.

b .
Second Solution. Suppose that a > b > ¢. Denote t = a_~2l—_ > ¢, then the inequality

(4a? 4 be)(4b* + ca) < (4t* + te)?
is equivalent to
(a —b)? Gcﬂ +a? 4+ b? 4 6ab— 3ca — 3cb) >0,

which is clearly true because a > b > ¢. We deduce that

1 1 1 2 1
+ + = + .
Vida2 +be  VAb?2 +ca VAR +ab T VA2 +te V42 + t?

It remains to prove that

2 1 4 4
- > =
,/4t2+tc+\ﬂ102+t2—a+b+c 2t+c

2 1 1 1 4 2
e L e e I -
(\/4t2+tc t) (\/402-+t2 t)" t+c t

—C -—4C2 —20
& + >
VAEZ ftc(2t + V22 Ftc) VAT +E(t+ VAE + ) T t(2t +¢)
2 1 4c

& -~ — > 0.
t(2t+¢) Va2 +ic(2t + V22 +te) VAT +E2(t+ VAT +t2)
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Notice that
1 1

>
3t(2t +¢) — VA2 + te(2t + V282 + tc)
& 9t2(2t + ¢)? < (482 + to) (2t + V4E? + tc)?
o 24 6tc+ 26 < 242 + te + V482 + te,

(x)

which is obvious because ¢ > ¢. We will now prove that
5 4c
2 . (5%)
3t(2t + c) T tvA? + 2(t + VA + t2)
& 5VA 4 82(t+ VA2 + ¢?) > 12¢(2t + ¢).

According to Cauchy-Schwarz inequality, we deduce that 1/5(4¢? + £2) > 4c+t and
similarly, 1/5(4¢% + ¢?) > 4t + ¢. So it’s enough to prove that

(de + t)(de+ (VB + 1)t) > 12¢(2t + ¢)

& (VB+1)t? + (16 — 4VB)te + 4¢® > 0.

which is obvious. Combining the results (x) and (xx) we get the desired result.
\Y

Problem 87. Lel a,b, ¢ be non-negative real numbers. Prove that

\/ ab N \/7 be " ca <1
4a? + b2 + 4¢? 4b? + ¢? + 4a? 4c? + a2 +4b% ~

° (Pham Kim Hung)

SoLuTioN. WLOG, suppose that a?+b%4-¢? = 3. By the weighted Jensen inequality,
we deduce that

Z\/ ab . Z (12 'I- 4b2 'I- 402 272 . ab
p 4a? + b? + 4c? pow 27 (4a? + b2 + 4c?)(a? + 4b2 + 4c?)?

27ab 3ab
< =

It remains to prove that

3% ab(d—c*) < [J4—a?

cyc cye

& 4 (}:ab) (Zﬁ) < 1—96 (Za2)2 +4) a®? +3)  a?be — a?bc?

cye cyce cyc¢ cye cyc
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& 36) ab+c)+9) a’be+ 9’ ? <163 at + 68 ab%.

cye cye cye cyc

Because 3abc ) a = abe (Z a) (Z a2) > 9a2bc?, we only need to prove that

cyce cyce cye

QZas(b-l- ¢) +3Za2bc§_ 4Za4 + 17Za2b2

cyce cye cye cyc

3 2
=S Z(2a2 +.2b2+—§——5ab) (a—b)%>0.
cyc
Suppose that @ > b > ¢, then we are done by Abel’s inequality because 2b% + 2¢% +

3 2
%—SbCEOand

3c? 32
(2a2 Fo o 5ab> + (2a2 1 2¢% + -~ 5ac) = 4a’® + g(b2 + ¢?) — 5a(b + ©)

5
2
_>_4a2+9(b_:c) — 10a (b;c) > 0.

4

\%

Problem 88. Suppose that n is a positive integer and (z1,Z2, .., Zn); (Y1,Y2y -os Un)

are two positive real sequences. Let (29, 23, ..., zon,) be a positive sequence satisfying
zi2+j > zy; V1<i,5 <n.

Denote M = max{zy, ..., 20, }. Prove the following inequality

>

n n

<M+22 + ... +Z2n)2

(-’101 +x2+ ... +-’En) (yl +y2 + ... +yn>
2n ) '

(IMO Shortlist 2003)

SoLUTION. Let X = max{z1, z2,...,z,} and Y = max{y1,y2, -..,yn}. WLOG, we can
assume that X =Y = 1 (otherwise, replace z; with z;/X,y; with y;/Y and 2; with
2;/VXY). According to AM-GM inequality, the following result is stronger

M+tz+. . tzm2oytzet .tz +yi+ya+.+yn (%)

Let r be a certain real numbers. We will prove that the number of terms of the right-
hand expression of (x) which are bigger than r is not bigger than the number of terms

on the left-hand expression of () which are bigger than r. In fact, this clause is clearly
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true if » > 1 (because there are no terms on the right-hand expression of (x) bigger

than 7). Consider now the case r < 1. We denote
A={ieN, lgignlwi>r},

B={ieN, lgignlyi>r},

then certainly |A|,|B| > 1. Suppose that A = {i1,%2,...,4a} and B = {j1,j2,..., Jb}
with i1 < ig < ... <iq and §1 < j3 < ... < Jp. There are at least a + b—1 terms of the

sequence (29, 23, ..., 22 ) Which are bigger than » as:

Ziy+g1s Zigtas ooy iy oty o0y Cia+Fee

On the other hand, notice that a + b— 1 > 1, so at least one number z; is bigger
than r, so M > r. This implies that there are at least a + b terms on the left-hand

expression of (%) bigger than r.

From this property, we conclude that for every natural number k (1 < k < 2n),
the k**—greatest number of the left-hand expression of (%) is not smaller than the
kth —greatest number of the right-hand expression of (). So, obviously, the sum of
all terms of the left hand expression of (%) is not smaller than that of the right-hand

expression of (x). The problem is completely solved.
\%
Problem 89. (a).Let a,b,c be three real numbers. Prove that
a® +b* + c* + ab® + be® + ca® > 2(a®b + B3¢+ a).
(b). Let a,b, ¢ be three real numbers and a® + b% 4 ¢ + ab + be+ ca = 6. Prove that
a*b+b3c+ Fa+ abela+ b+ c) < 6.

(c). Find the best (greatest) constant k such the the following inequality holds for all

real numbers a, b, ¢
a + b + ! + k(ab+ be+ ca)? > (1 + 3k)(a3b + b3c+ cPa)

(Vasile Cirtoaje and Pham Kim Hung)

SOLUTION. For all real numbers a, b, ¢, we have that

(a® — kab + kac — ¢*)? + (b% — kbc + kba — a?)? 4+ (c? — kea+ keb — b%)? > 0.
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After expanding, this inequality becomes

Yo+ (R -1 PP kY ab® 22k b+ (K — k)Y a’be

cyce cye cyc cyce cye

(a). Let k = 1. We obtain
a* +b* + c* + ab® 4+ bc® + ca® > 2(ab + b3c + Fa).

(b). Let k =2, we obtain

2
(ZaQ) + Za2b2+ Zabz‘1 24Za3b+2abc2a

cye cye cye cye cye

2
s (Za2 + Zab) > 6Za3b+ 6abcz a.
cyce cyce cyc cyc
Ifa? + b2 + & + ab+ bc+ ca = 6 then a3b + b3c+ cBa 4+ abe(a + b+ ¢) < 6.
(¢). We have
(e = )2 +2¢(a - c))2 + ((b—¢)? + 2a(b— a))2 +((c— a)® +2b(c— b))2 > 0.

After expanding, this inequality becomes

6) at +4Za’~’bc+zza’~’b2 >12) a®

cyc cye cyc cyce
1 2
4 4 4 3
=>Za + b6 +¢ +§(Zab) ZQZ(L b.
cyce cyc cye

So the best constant k (greatest) that we are looking for is k = 1/3.

Comment. In all these results, there is a special case of equality different from the

trivial case a = b = c. For example, in part (a), the equality holds for
a=2cos20+ 1 ~2.88,b=2cos40 = 1.532,c = —1.
- \Y%

Problem 90. Let a,b,c,d be non-negative real numbers verifying a +b+ c+d = 4.

Prove that for all positive integers k,n greater than 2
(k+a™)(k+b™)(k+ c*)(k+d™) > (k+1)*.

(Pham Kim Hung)
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SoLUTION. Notice that for all n > 2, we have

k+a™\2 kE+a2\"
> .
E+1 - E+1

This inequality can be proved easily by AM-GM inequality or Hélder inequality.

According to this result, we get

k+a™\? k+a2\"
> .
H(k+1> “H(k+1)
cyc

cyce

Therefore it’s enough to prove the inequality for n = 2. Suppose that this inequality
is true for k = 2, then it will be true for all k > 2 because Hélder inequality claims

that
4q

H(k+a2) = H (k—2)+(2+a?) > ((k—-2) + 4/1_[(2 +a?) | > (k+1)~

So it suffices to prove the inequality in the case £ = n = 2, namely
(2+a>)2+b) 2+ )2 +d*) > 8l
First Solution. (symmetric separation) The inequality is equivalent to

Z In(2 + a?) > 4In3.

cye

Consider the following function

f(z) =In(2 +2?) —In3 — 2; + %
Its derivative is
2z 2 2
4 — e — e = e — J—
fi(z) = 51 3 3(:v 1)(2 — z).

So f(z) is decreasing on [0, 1] and [2, +o0], increasing on [1, 2], therefore

Or<nzigtf(:v) =min{f(1), f(t)} vt € [0,4] (%)
From (%), we deduce that forall 1 <= < 2.5, f(z) > f(1) = 0. If all numbers a,b, ¢,d
are smaller than 2.5 then we are done because
20 2
<0 n(2+z3)<t= -2 = )
Zf(a)_ @Zn( +:v)_(3 3+ln3) 41n3

cyc cyc
Otherwise, suppose that a > 2.5. Let t = %(b + ¢+ d) then clearly

[1@+a®) >16+8)  a® +4a(¥* + ¢ +d?) > 16 + 8a® + 24t2 + 12422

cye cye
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It remains to prove that for all £ < 0.5
g(t) = 8(4 — 3t)? + 24 + 12¢(4 — 3a)? 2.65.
Since 4 — 3t > 2.5 and (4 — 3¢)% < 4
g'(8) = —48(4—3t)+48t+24t(4—3t)* — 72t (4—3t) < —48-(2.5)%+48-(0.5)+24-4 < 0,
and we can conclude that
g(t) 2 g(0.5) = 74.75 > 65.

The proof is completed and equality holds fora =b=c=d = 1.

Second Solution. Notice that if a + b < 2 then

(a+b)2)2.

(2 +a%)(2+b%) > <2+ n

Indeed, this is equivalent to

o (a+b)*

T —a®? >0 & (a—b)? (16— (a+b)* —4ab) >0

2(a® +b%) — (a +b)
which is obvious because a + b < 2. Now suppose that d > ¢ > b > a and
F(a,bc,d) =] ](2 +a?).
cye

Because c+a < 2, s0 F(a,b,¢,d) > F (2;,5, %c_

of problem 83,

,d). As in the second solution

at+b+c

F(a,b,c,d) > F(z,z,2,4 — 32), z = 3

It remains to prove that (2 + 22)3 (2 + (4 — 3z)?) > 81, or f(z) > 41n3 where
f(z) = 3In(2 +2%) +1n (2 + (4 — 3z)?).

It’s easy to check that

N 6(4 — 3z)
F® = e~ T A= 3

and f'(z) = 0 if and only if

(e—1) |(4-— w—(ﬁ—@) —0.
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If z # 1, we must have (4 — 3z) = 2. However, AM-GM inequality shows that
3z(4 — 3z) < 4, or x(4 — 3z) < 4/3 < 2. So the equation f’(z) = 0 has exactly one

positive real root z = 1. Therefore we conclude that

Jnax, (z) = f(1) =4In3.

Comment. By a similar method as in the second solution, we can propose and solve

a general problem as follows

% Let a,b, c,d be non-negative real numbers with sum 4. For all k > 1, prove that
(k + a®)(k +b%)(k + *)(k + d?) > min {(k+ 1)*; (k + o?)® (k+ (4 — 30)%) },

2—-+/4-3k
3 .

4
where o is determined in the case k < 3 as o =

To prove this, just notice that if k > 1 and a +b < 2 then
2 2 (a+b)%\*
(k+a*)(k+b°) > (k‘+T) .
By choosing particular cases k’s, we can obtain interesting results as follows

(54 4a?)(5 + 4b%) (5 + 4c?)(5 + 4d?) > 6480.

3 4
(1+a®)(1 + *)(1 + *)(1 +d?) > 10 (1 + é) = 19%.

16
(4 + 3a%)(4 + 3b%)(4 + 3¢%)(4 + 3d?) > min (74, 23—3) = 7% = 2401.
v

Problem 91. Let a,b,c be positive real numbers such that a? + b* + ¢* = 3. Prove
that

a3b? + b3 + c2a? < 3.
SoLuTION. By Cauchy-Schwarz inequality, we have
(@3? + b3c? + 2a?)? < (a?b? + b2 + 2a?)(a?b? + bic? + ta).
It remains to prove that if x +y + 2 = 3 then

(e H ez +{—_:zrc:)j(:r:2:y +ue +|—.22;w') <3,
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Notice that

3(zy +yz + 22)(2%y + vz + 2%2) = (Z a:) (Z :By) (Z :1:21/)

cyce cyc cye

— (Z g;y) (Z Py+> 2P+ 3a:yz) :

cye cyc cye
Let s = zy + yz + zz then 3abc > 4s — 9 by Schur inequality. Moreover
Za:"’ =9-—-12s ; Za:"’y"’ =82 —6zyz ;
cyce cyce
Taking into account problem 52, we have
3 Za:sy < (22 + 92+ 222 = (9—26)2
cye

We deduce that

3 (Z a:y) (Z 2y + ) 2+ 3:z:yz)

> > p>
<s ((9 — 28)% + 357 — gabc) <s ((9 —26)% + 3% — 3(ds — 9)) .
It suffices to prove that
s ((9—29)"+35% —3(4s = 9)) <81 & (s—3)(7s® =275 +27) <O,

which is obvious because s < 3. We are done and the equality holds for a = b =c.

Comment. According to this result, we can easily obtain that (due to the Cauchy
reverse)
* Given positive real numbers with sum 3. Prove that

a + b n c >§
1+  14c¢3 14a3— 2

\Y%

Problem 92. Let a,b,c be arbitrary positive real numbers. Prove that

b2\’ A\? a?\? _ 12(a® + b + ¢%)
> il 2\ > )
(a+ c) +(b+ a) +(c+ b) - at+b+c

(Pham Kim Hung)
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SoLUTION. The inequality is equivalent to

a2 +v* 42+

2ab? 2  2ca? b4 4 ot 12(a3 + b2+ ¢P)
c a b ¢ a2 b at+b+c

Using the following identities

cye eye cye
ab? a(b — c)?
Lo T = T
cye cye cye
3y a® Y (b+c)(b—c)?
cye 2 _ oy
Ya czy; “ at+b+c '
cye

the inequality can be rewritten as

Y (-c)? ((1+%)2—1—M+2—“) >0

povs at+b+c c

or Sa(b—¢)* + Sp(c — @)* + Sc(a = b)? > O where

b? 4 2
Sa:_2+ a N (a+b)_4’

¢ a+b+c c

c? 4b 2(b+c)
Sp =< -
b a2+a+b+c+ a 4

a? 4c 2(a+¢)
Se=ptareret 5 4

(i). The first case. ¢ > b > a. Clearly, S, > 0 and

2
S, +8, = c2+b_+4(a+b)+2(b+c)+2(a+b)_
a2 ¢ a+b+ec a c

8
2 p? 2
> (%+—2—4)+(§+—a—4)+(313—2)20-
b c a c a

Similarly, we have that

_+—b_2—+a+b+c a b

2 a? 2b 2a 2c
( +35—2)+(? ?—4)+(;—2)20-

So the desired result follows because

S 18 = 2 a?  4(b+c) +2(b+c)+2(a+c)

Sa(b—¢)* + Sp(a—)? + Sc(a — )2 > (Sa + Sb)(b = )2 + (Sy + So)(a — b)? > 0.
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(ii). The second case. a > b > c. Clearly, S, > 1, S, > —1 + _de and
a+b+ec

2 b 8b+4a  4(b4c)  2(a+bd)
Sy == 4= —
+ 25 a? +02 a+b+c+ a + c

8b+ 4 2b
>(__+i_4)+(_+2_a_4)+(&+2_a_4) > 0.
a+t+b+c a c a c

If 2b > a + ¢ then we have

12

4 b  16b+4da+4dc  8(b+c)  2(a+b)
Se +4Sp+ 8. > — + — -
« P4+ 02 Tt a+btec « T 21
42 b? | 8(b 2
L (+c)+ (a.+b)_13
a c a ¢
4¢* | 16c | 2a

> —+—+—-10>2V/32-10>0.
a a C

Consider the cases
If a + ¢ < 2b, certainly 2(b—c¢) > o —c. If S, > 0 we are done immediately.
Otherwise, suppose that Sp < 0, then

Sa(d—¢)? + Sp(a—c)? + Sc(a — )% > (S, + 45, + S)(b— )2 > 0.

If a + ¢ > 2b, we will prove S, + 25y > 0, or

2¢2  a?  8b+4c N 4(b+ c) N 2(a+c)

L e, e —12>0.
9(c) PR ey i - ; 12>0

Just notice that g(c) is an increasing function of ¢ > 0 and ¢ > 2b — a, therefore
(\) If @ > 2b, we have that

a? 8b 4b  2a
9@ 29O =+ gt o+ 12

a-tb 9b a 4b a? 1 b 2
- L a2 e _ LR B
( b tare 6)+(b+a 4)+(b’~’ 4)+(3 a+b)+3“

(.) If a < 2b, 1t’s easy to infer that

82 a2 4b 4a 14
>gb—a)= — +— 4+ 22 _ >0
g(c) 2 9(2b —a) s tet 32

We obtain the conclusion because
Sa(b—¢)? + Sp(a — )% + Sc(a — b)? > (Su + 25)(b — ¢)* + (Se +2Sp)(a — b)? > 0.

\Y%
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Problem 93. Suppose that n is an integer greater than 2 and a1,az, ...,an aren real

numbers. Prove that for any non-empty subset S of {1,2,...,n}, we have
2
(Z ai) < Z (ai + ... +a;)%.
€S 1<i<j<n

(Gabriel Dospinescu)

SoLUTION. We will first prove the following lemma

Lemma. For all real numbers z1, 22, ..., Lok 41

2

Z azip1 | < Z (ai + ... + az)* (%)

0<i<k 1<i<j<2k+1

PROOF. Let ;=21 + 25+ ... + z; Vi € {1,2,...,](3}, then

E agiy1 =81+ 83— 82+ 85— 84+ ... + Sop1 — S2k-
0<i<k

The left-hand expression of (x) can be rewritten to

2k+1

2
E s; —2 E 82482541 + 2 E 82i825 + 2 E 82i4152j+1 + 2,
i=1 i3 i . i<s

and the right-hand expression of (x) is

2k+1

> (si—s5) = (2k +1) Z s2-2) sis;.

i<j i<j
After reducing similar terms on both sides, we have the following equivalent inequality

2k+1

2k Z 52> 42 82i825 + 42 82i+1825+1,
i=1

1< i<j
2 2 2
& (s2: —s25)" + E (2i41 — s2541)" + E 83 2 0,
1<i<j<k 1<i<j<k 1<i<j<k

which is obvious. The lemma is completely solved.

Returning to our original problem, we have to prove it for an arbitrary set S C
{1,2,...,n}. Obviously, if S has no separated elements (S = {i,7+1,...,5}) we are done
(because all terms of the right-hand expression appear in the left-hand expression.

Suppose that S is formed by some separated ”segments”, namely

S={jn+1,..,42,733, 53+ 1., Gay s Jomi 1y Jomet + 1seesy Foma2 )
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Denote

by = aj, +aj 1+ ... +aj,

by = Qjy+1 + ..+ ay,

b2k+1 = Qjypn gy + Qjgmpr+1 +..+ T2

k
According to the previous lemma, with the remark that 3~ a; = Y bgj41, we conclude
icS 7=0

2

2 k
(Z ai) = Z b2j+.1 < Z (b,' +..+ bj)2 < RHS,
j=1

i€S 1<i<j<n
because each number (b; + ... + b;)? appear in the right-hand expression.

\Y%

Problem 94. Let a,b, ¢ be three non-negative real numbers. Prove that
a’ b3 c? 5abc
+ + + > 1.
(a+b)2  (b+c)®  (c+a)®  (a+b)(b+c)(c+a)
(Pham Kim Hung)

SoLUTION. The inequality can be changed into an equivalent form as follow

S SN SR 5 -
1+2)*  (Q+y) (1+2°  (Q+2)(1+y)(l+2) 7

b
where z = —,y = E,z =2 and zyz = 1. Denote
a b c
2 2
=] - -, :1——’ =] - .
m=1 l+xn 1+yp 1+2

Certainly m,n,p € [-1,1] and
1+m)(1+n)(Q+p)=1-m)(1-n)1-p) = m+n+p+mnp=0.

Our problem becomes

Y (1-mP+5][a-m)>8

cyc

& 32m2+52mn232m+2m3

cyc cyc cyc cye
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< 3Z'm2+52mn2 Zm3—3mnp.

eye cyc cyc
If mn + np + pm > 0 then LHS > 0. Otherwise, suppose that mn + np + mp < 0,
then LHS = (m+n+ p)? — (mn+np+pm) > 0. So, in every case, we have LHS > 0.
Moreover, RHS = (m+n + go)('m2 + n? 4+ p? — mn — np — pm) has the same sign as
m+n+p, so we only need to consider the inequality in case RHS > 0 or equivalently

m+n+p>0 Lett = m+n+pand v =mn+ np+ pm, the inequality becomes
3(1%2 — 2u) + 5u > 1(t? — 3u) <« t*(3—1)+u(3t—1) >0 (+)
According to AM-GM inequality, we have
m? +n? +p? > 3|mnp|2/3 > —-3mnp=3(m+n-tp)

= t? —2u > 3t = 2u < t(t—3) (%*)

If w > 0 then we immediately have 33" m2 +5Y mn > 23" m? > Y. m?® — 3mnp.
cyc cyce cyc cyc
Otherwise, suppose that u < 0. The inequality is also obvious if 3t — 1 < 0, so it’s

enough to consider the case 3t —1 > 0. Replacing (*%) to (%), it remains to prove that
223 — )+t —-3)(Bt~1)>0 & tB—t)(1—1t) >0 & H3—t)(1+ mnp) >0,

which is also obvious because m,n,p € [—1, 1]. Notice that the equality can hold in
(x) form=n=p=0and m =n = 1,p = —1 up to permutation but the equality

holds in the initial inequality just for a = b = c.
Comment. With the saine approach, we can prove the following inequality
* Let a,b, ¢ be three non-negative real numbers. Prove that

a? 4 b? n c? + 2abe >1
(a+b)?  (b+c)?  (c+a)?  (a+b)(b+c)cta) =

We also have another solution to this problem by Cauchy-Schwarz inequality. In-

deed, it is equivalent to (after some substitutions)

4 2w2y222

X
¢ +— Ly >
2 (2 +y2)*  (2? +y2)(y? + 22) (2% +2y) ~

cyc

1.

By Cauchy-Schwarz inequality, we obtain

Z 24 S (:z:2 +y2 + 2‘2)2
(22 +y2)? T (22 + y2)? + (12 + 22)2 4 (22 + ay)?’

cyc
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It remains to prove that

(22 4+ 32 + 22)? 2a2y222
- 5 5 +- >1
(2% +92)2 4 (¥2 + z2)? + (22 + 2y)?  (2® +y2) (3?2 + 22) (22 +2y) ~
2w2y222 w2y2 + y2z2 + 22332 _ 1134 + y4 + 24

A4
@+ 32)(82 + 22)(2 + 79) = (@ +92)° + (4 + 22)? + (7 + 2y)?

1 1
2 il 2 2 p2 S
e [[(*+y2) (Z mg) +2) (2* +y2)’ 2 [ [(2* +92) (Z yz) :
cyc cyc cyc cyc cyce
After expanding and reducing similar terms, we obtain an equivalent inequality

> afbc+2) a4y azs"‘ +y° 04("2:172) > 22@ +Y ad(b+o).

cyc cye cyc cyce cyc cye

Rewrite this inequality in the form S, (b — ¢)? + Sp(c — a)? + Se(a — b)? with

T Gt o B (R

Se = S ¥ T h2 > T
B (A +ad)  (c—a)? ¥

Sp=— -
® = %ca + c2a? + 2 2
A AP +b)  (a—b)? P

S, = — - —;

T ot T T 2 2’

WLOG, suppose that a > b > ¢, then S, Sy > 0. Moreover,

373 3 2 2 3
P at) Bl Ve g

Sy +S5.>
bt e 2 c2a? 2 T c

We can conclude that

D " Sa(b—0)? > (Ss + Sc)(a—b)* 2 0.

cye
\Y
Problem 95. Let a,b, ¢ be arbitrary positive real numbers. Prove that
(a® + % 4 )2 > 2(a®b + B¢+ Pa) + abc(a® + b + ).
(Pham Kim Hung, Le Huu Dien Khue)

>

SoLUTION. Rewrite the inequality in the following form

Zas +2Z:a3b3 22Za5b+acha3

cyc cyce cyc eye
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& 2 (Za6+2a“b2 —2Za5b) + (Za4b2+za4c2 —2acha3) +

cyc cye cyc cyc cyc cyc
+ (2 E a3b® — E atb? — E a2b4) > (E alb? — E a402)
cyc cyc cyc cyc cyce

& Z(Za4 + ¢t = a??)(a - b)? > (a® — bD)(b® — ?)(a? — ?) (%)

Denote M = (a—b)(b—c)(c—a). Certainly, we may assume thata > b>canda > c

in order to have M > 0. We will prove this inequality using the following results

(1) Y (Ba+2c—b)(a—b)?>4M
cyc
@) Y (11a® +6¢ — b* —4dab)(a — b)* > 8la+b+ )M
cyc
(3) Z(4a3 +2¢® —a?b - b%a)(a — b)? > (a® + b2 + ¢ + 3ab + 3bc+ 3ca)M
cyc

There is an interesting relationship between these inequalities: (1) = (2) = (3). We
will prove (1) in order to show (2) and then (3).

The proof of (1). Certainly, it suffices to prove the inequality in the case ¢ =
min{a, b, ¢} = 0 (because if we decrease a,b, ¢ by an arbitrary positive real number
smaller then c then the right-hand expression of (1) is unchanged, but the left-hand

side is decreased). If ¢ = 0, the condition (1) becomes
(3a — b)(a — b)? + (3b + 2a)b? + (—a + 2b)a’® > 3ab(a — b)
o 2a® —8a%b+10ab® +2b° > 0 & h(z) =2z° — 822 410z 4+2 > 0,

where z = %. Notice that h'(z) = 2(z — 1)(8z — 5), so it’s easy to conclude that

h(m)Zf(g) >5>0.
Therefore (1) is proved. Now let us show that (1) gives (2).
The proof of (2). Let a = a1+t = f1(t),b =01+t = fo(t),c=c1 +t = f3(t) then

(2) is equivalent to

F&) =" (11£1(t)% — f2(t)2 — 4f1(t) f2(t) + 6£3(t)2) (a—b)2—8(f1(t)+ fa(t)+fa(t))M > 0.
According to (1), we can see that

F1@) = (18£1(t)—6f2(t)+12f3(t)) (a—b)>—24M = 6 > (3a—b+2c)(a—b)*—24M >0

cyc cyc
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so f(t) > f(—c) (because t > —c). This property shows that it suffices to consider (2)

in the case ¢ = 0,

*

(11a® — b — dab)(a — b)* + (116 + 6a?)b? + (—a® + 6b%)a® > 8(a + b)ab(a — b)
¢ 1la* — 350°b + 30a%b? + 6ab® + 10b* > 0.

This inequality is certainly true because AM-GM inequality shows that 1la? +
30a2b? > 24/11 - 30a3b > 35a3b. Therefore (2) is proved successfully.

The proof of (8). Similarly, according to (2) and using the same reasoning as above,
we realize that it suffices to prove (3) in case min{a,b,c} = ¢ = 0. In this case, the

inequality becomes
(4a® — a®b)(a — b) + (4b® 4 2a3)b? + 2b%a? > (a® + b + 3ab)ab(a — b)
< 4a® — 10a%b + 6a3b% + 3023 + ab? + 4° > 0

If 2a > 3b then we are done because 4a® — 10a%b + 6a36? = 2a3(a — b)(2a — 3b) > 0.
Suppose that 2a < 3b then

4a® — 10a*b + 6a°3b? + 3026 > 4a® — 10a’b + 8a3b? > (2v/32 — 10)a’s > 0.
Are this step, (3) is proved successfully.

The proof of (x). Similarly, according to (3) and using the same reasoning, we
may assume that ¢ = 0. The inequality becomes simple as (a® + b3)? > 2a%b or
g(a) = a® — 2a5%b 4 2a3b® 4 b8. It’s easy to check that ¢’(a) > 0, thus g(a) > g(b) = 0.
The inequality is completely proved and the equality holds fora = b =c.

Comment. The solution above is based on the mixing variable method. This problem

can help us prove a very hard inequality, proposed by an anonymous, as follows

* Let a,b, ¢ be positive real numbers such that abc = 1. Prove that

a + b + c o
bM4+2 A+2 at+27 7
To prove it, we denote a = = b =z ,C = —7: then by Cauchy-Schwarz inequality
z’

and the previous result, we can conczrude that
5

6
a Y _ Y
§b4+2 - ;:rz“ + 2zyA —Czy;wyz“ + 2zy°
(xa +y3 +23)2
~ zyz(zd + y3 + 28) + 2(zy® + y2° + 22°)
\Y

> 1.
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Problem 96. Let a,b,c,d be non-negative real numbers such that
(a+b+ec+d)? =3 +b+2+d%).
Prove the following inequality
a + b + & + d* > 28abed.
. (Pham Kim Hung)

SOLUTION. Let m = a+b,n = ¢+d,z = ab and y = cd then (m+n)? = 3(m? +n? —
2z — 2y) or 3(z + y) = m? + n? — mn. The problem becomes

F =2(2® 4+ y?) — 4(mPz + n?y) — 282y + m* + n* > 0.

m2

Now we fix m, n (as constants) and let z,y vary (as variables) such that = < BL <
2

7 m2+n2—mn
T andz +y=8=

3 . In this case, F' can be rewritten as

F =28% 4+ m* 4+ n* — 4(m*z + n’y 4 8zy)
Since
miz+ny+8zy = mPrtn?(s—z)48z(s—z) = —822 4 (m? —n? +8s)z-+n’s = f(z)

is a concave function of z, it follows that the maximum value of f(z) is attained if an

2 2 __ .2 8
only if z = mT (as an upper bound of z) or z = m——fﬁif (as the unique root

of the function f’(x), if it exists). From this, the problem can be divided into two
smaller cases
m?2 —n? 4 8s —m? +n? 4 8s

then y = .Let a =m24n?

(i). The first case. If z = 6 T

and # = mn then

(m? —n?+85)2 +32n%s o + 1650 — 482 + 6452

fla) = 32 32

We need to prove that
1652 + 802 — 1682 > o® + 1650 — 482 + 645°
& Ta? > 48s% +16sa + 1232
< 210® > 16(a — B)? + 16a(a — B) + 3632

& 210® > 32a° — 48008 + 5232
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& —1la® +48aB-526% >0 & (—1la+268)(a—28) >0

Notice that oo — 28 = (m — n)2 > 0. So it suffices to prove that

1Mo €260 < 11(m2 +n2) < 26mn < u < ik < 1—:3—_!;—— Vs (*)
11 7 11
m? n?
Because z < e and y < T we must have
2 _ 8 2 4 /
m- 1nb+_s<%_ = 8s > 3m? + n? =>on2<8mn+m"’=>1 trvey
m
2 _m2 4 8 2 /‘
—71—7]72—6: < Zl4— =8 >32+m? =52 <8&mn4n? = L 4+5
; n

These results confirm condition (*) immediately and the proof is finished.

2 4s —m?2  m?2+4n? —4mn

. m \
(i). The second case. If = = T then y = 2 = 5 . We need

to prove that

m?  (m? 4 4n? —dmn)n®  m?(m? 4 4n? — 4mn)
4 * 12 * 6

252 +m? +n1 >4 <
& 2(m? —mn 4+ n?)? + 90 > 3(m?*n? + 4n* — 4mn®) 4 6(m? 4 Am?n® — 4m 3n)
& —4m* +20m3n — 21m®n? + 8mn® — n? >0
& (2m —n)*(—m? + 4mn —n?) > 0.

2 2 2
m* +4n® — 3mn n :
Because y = B < T it follows that m? + n? < 3mn and therefore

the inequality is obviously true. The proof of this case is finished.
We have the desired result. The equality holds for unexpected cases (a,b,c,d) ~
(3,1,L,1) or (a,b,¢,d) ~ (2 + V3,2 4+ /3,2 — /3,2 — V/3) up to permutation.

v

Problem 97. Let a,b, c be positive real numbers with sum 3. Prove that

a n b n c >3
B4+c 24+a a2+b~ 2

(Pham Kim Hung)

SoLUTION. After expanding, we can change the inequality into

2z:a4 +2Za2b+ 3abc > 3a2b’c? + Z:agb2 + I%Z:ab3

cyc cyc cyc cyc
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Let M =ab+bc+ ca and S = (a — b)(a — ¢)(b — ¢). According to the identities

2Za2b =85 +43M —3abc;

cye

22a3b2 =.S'M+3§:a2b2 — Mabc ;

cyc

2Zab3 =Za3(b+c) —~35;

cyc

the inequality is equivalent to

4ch4 + 115 + 6M + Mabc > 6a%b?c + SM + l’Sz:azb2 + 3Za3(b+c).

cye cyce cye

Notice that abc(M + 3) > 6a?b%c?, so we need to prove that A > S(M — 11) where

A=43"a"+6M -3 a’t* ~3) a®(b+c) - 3abe

cyc cyc cyc

Represent A with the help of some squares as

34 = 122a4 + 7ach:a—SZar‘)b2 —7Za3(b+c)

cyc cyc

= 6A = 22(12(12 + 122 + 10ab — 7¢*)(a ~ b)2.

cyc

Because M < 11, we may assume that S < 0 and b > a > ¢. We will prove
6A> —665 & 64A2>22(a+b+c)(a—b)(b—c)(c—a) (¥)
If min(a, b,¢) = ¢ = 0 then the problem is proved because
6A =" (12a® +125* + 10ab — 7c*)(a — b)?
= (12a% + 126 4 10ab)(a — b)? + (12a® — 7b%)a® + (12b® — 7a?)b?
= 10a2b? + (24a? + 24b® + 34ab)(a — b)?
> 1000 + ‘_121(02 ~ b%)? > 2V5.41ab(b* — a?) > 22ab(a — b)(a + b).

Now suppose that min(a,b,¢) > 0. Since (x) is homogeneous, we can dismiss the
condition a 4+ b+ ¢ = 3 but prove (x) for arbitrary positive numbers a, b, c. We realize

first that if we replace a,b,c with a+t,b+t,c+1 then the difference between the two

sides is increased. Indeed, we will prove that

> (12(a+)? +12(b+1)2+10(a+t) (b+t) —7(c+t)2 —12(a®+b?) —10ab+7c?) (a—b)? > 6615,

cye

g I g et R S W
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which 1s inferred from

Y (17a +17b — Tc)(a — b)* > 33(a — b)(b — ¢)(c — a) (+*)

cyc

Using the same method one more time (replacing a,b,c with a + ¢,b + t,c + t), we

only need to examine (%*) in case min(a,b,c) = ¢ = 0, or equivalently
17(a + b)(a — b)? + (17a — 7b)a® + (17b — 7Ta)b® > 22ab(b — a),

which is obviously true because

LHS > 17(a + b)(a — b)2 + 10(a® + b%) > 24/17.10(a + b)(a3® + b3)(b — a) > RHS.
This last step completes the proof. The equality holds fora =b=c=1.
v

Problem 98. Let a,b, c be positive real numbers. Prove that

1 1 1 1
> .
(2a + b)? + (2b + ¢)? + (2¢+a)? ~ ab+bc+ca

(Pham Kim Hung)

SOLUTION, After expanding, the inequality becomes

Z(4a5b+ 4a5¢ —12a%b% + 12a%¢? + 50303 + +8a%bec — 19a3b? c+ 5a3 b — Ta?b? ) > 0
cyc
or
6 Z ab(a® — b® — 2ab + 2ac)? + Z(2a5b — a%b® — 4a%bc + 10a%b%c — Ta?bc?) > 0.
cyc sym
It remains to prove that

2 Z a®(b+c)—2 Zasb3 - 82a4bc+ 10ach ab(a + b) — 42a%b%c* > 0.

cyce cyc cyc cyc
Using the identity 2(a — b)?(b— c)?(c — a)? > 0, we infer that
2 Za4(b2 + )+ 4acha2(b +c)—4 Zasb3 —12a%%c* - 4abcz a®> 0.
cyc eye cyc cyc
Finally, we have to prove that

2 Z a® (b+c)+6abcz ab(a+b)+2 Z a®b® > 4abcz a®430a%b%c? 42 Z ad(b®+¢c?).

cyc cyc cyc cyc cyc
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This inequality can be rewritten using square
Sa(b—c)* + Sp(c—a)? + Se(a — b)? >0,

where
Sa = 2bc(b? + be + ¢2) + a3(b + ¢) — 2abc(b + ¢) + 6a’be ;
Sy = 2ca(c? + ca + a?) + b3 (c + a) — 2abc(c + a) + 6cab ;
Se = 2ab(a® + ab+ b?) + 3(a + b) — 2abc(a + b) + 6cPbe ;
Clearly, S, is non-negative since (applying AM-GM inequality)

Sa>be(b+c): + 6a2bc — 2abc(b + c)>2 (\/é - 1) abe(b + ¢) > 0.

Similarly, S, and S, are non-negative, so the inequality is completely proved, and we

are done. The equality holds only for a = b =c.
\Y%

Problem 99. Suppose that x1 > x93 > ... 2> Zen_1 > Zon > 0 are real numbers and

21+ o + ... + 29, = 2n — 1. Find the mazimum of the following expression
P = (af +23) (23 +2f) ... (23,1 + 23,) -
(Pham Kim Hung)

SoLuTION. Although it’s very hard to solve this problem directly, we find out unex-
pectedly that proving the general problem is simpler. In fact, the proposed problem

is a direct corollary of the following general result

k
* Suppose that € < o is a positive constant andzy > 29 > ... 2 Zop_1] > Xop > € >0
n

are real numbers satisfying that 1 + x9 + ... + 22, = k = const. The expression
Pn = (2} + 23) (2 + 25) - (2301 +23,)
attains the maximum if and only if 1 = ... = 29,1 and z9, = €.

We will prove this general result by the inductive method. Before performing induc-
tion steps, we figure out three results (they are built deliberately, not accidentally,

according to how the induction step progresses.

Lemma 1. Letz >y > 2>2t> 0 and y 4 2z = 20 then

(m2+y2)(22+t2) S.. (x2+a2)(a2+t2).




9.0. Problems and Solutions 251
Proor. Lety=a+Bandz2=a—-06,8>0,thenz> o+ B8 > oo — 8 > t. Denote
18 = [2* +(a+B)] [(e - B)* +22]

then it’s enough to prove that f’(3) < 0, which is clearly true because
f1(B) = —2z%(a — B) +2t%(a + B) — 26(a? — §%) < —22%.t + 2t%.2 < 0.
Lemma 2. Letx >y >22>0and (2n—1)z+2y = (2n+ 1)y (n € N, n > 2) then
2?2 (2? + %) (v + 2°) < 2920 (P + 2P).

PROOF. There exists a real number 8 > 0 for which z = y+28 andy = y—(2n—1)8.
Thus, we must have v — (2n — 1)8 > z. Denote

a(B) = (v+2B)*" (v = (2n = 1)8)* + (v +2B)*" (v — (2n — 1)B)*
+ (74 28)2"22 R (v +28) (v — (2n — 1)8)222.

Clearly g(8) = z2"~2(z? + y?)(y% + 22) and we need to prove that ¢’(3) < 0. Indeed
(in the expression of ¢’(8), we denote z = v+ 28 and y = v — (2n — 1) for a shorter
presentation, but we still think of them as related to the variable «)

g (B) = dnz® 142 — (4n = 2)z?"y + (4n — 4)z*"~ 354 — (8n — 4)z2n—2y3

+4nz? 7122 4 (4n — 4)y?n 32222 — (4n — 2)2?" 2y ?
Because = > y > z, we infer that
Anz?m 7122 4 (4n — 4)y?" 32222 — (4n — 2) 2P 2y2?
< Azt 122 - 03252 < 4na?nly?  9g2n-2y3,
It suffices to prove that
8nz®"1y? + (4n — 4)z”" 3y < (4n - 2)2"y + (8n — 2)z*" 2y
& dnzly+ (2n - 2)yd < (2n — 1)z® + (4n — 1)zy?
& (z—y)[(2n—1)2? - (2n+1)zy + (2n - 2)¥°] > 0,
which is clearly true because = > y. This ends the proof of the second lemma.

We also notice that lemma 2 is still true for n = 1 (the solution if n = 1 is much

simpler than the proof for the general case n > 2, so I will not show it here).



